Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2014_4_a4, author = {D. V. Semenova and N. A. Lukyanova}, title = {Recurrent formation of discrete probabilistic distributions of random sets of events}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {47--58}, publisher = {mathdoc}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2014_4_a4/} }
TY - JOUR AU - D. V. Semenova AU - N. A. Lukyanova TI - Recurrent formation of discrete probabilistic distributions of random sets of events JO - Prikladnaâ diskretnaâ matematika PY - 2014 SP - 47 EP - 58 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2014_4_a4/ LA - ru ID - PDM_2014_4_a4 ER -
D. V. Semenova; N. A. Lukyanova. Recurrent formation of discrete probabilistic distributions of random sets of events. Prikladnaâ diskretnaâ matematika, no. 4 (2014), pp. 47-58. http://geodesic.mathdoc.fr/item/PDM_2014_4_a4/
[1] Nguyen H. T., An Introduction to Random Sets, Taylor Francis Group, LLC, Boca Raton, 2006, 240 pp. | MR
[2] Shiryaev A. N., Veroyatnost-1, MTsNMO, M., 2004, 519 pp.
[3] Vorobev O. Yu., Vorobev A. O., “Summirovanie set-additivnykh funktsii i formula obrascheniya Mëbiusa”, Doklady RAN, 336:4 (2009), 417–420 | MR
[4] Semenova D. V., “On new notion of quasi-entropies of eventological distribution”, Proc. Second IASTED Intern. Multi-Conf. Automation Control and Inform. Technology, ACTA PRESS, Novosibirsk, 2005, 380–385
[5] Vorobyev O. Yu., Lukyanova N. A., “Properties of the entropy of multiplicative-truncated approximations of eventological distributions”, J. Siberian Federal University. Math. Physics, 4:1 (2011), 50–60
[6] Semenova D. V., Lukyanova N. A., “Random set decomposition of joint distribution of random variables of mixed type”, Proc. IAM, 1:2 (2012), 50–60
[7] Semenova D. V., Shangareeva L. Yu., “Associative Ali-Mikhail-Haq's random set”, Proc. scientific-applied conf. “Statistics and its Applications”, National University of Uzbekistan, Tashkent, 2013, 88–94
[8] Alsina S., Frank M., Schveizer B., Associative Functions: Triangular Norms and Copulas, World Scientific Publishing Co. Pte. Ltd., Singapore, 2006, 237 pp. | MR | Zbl
[9] Nelsen R. B., An Introduction to Copulas, second edition, Springer Science+Business Media, Inc., N.Y., 2006, 270 pp. | MR | Zbl
[10] Menger K., “Statistical metrics”, Proc. Nat. Acad. Sci. USA, 8 (1942), 535–537 | DOI | MR
[11] Schweizer B., Sklar A., Probabilistic Metric Spaces, North Holland, N.Y., 1983, 275 pp. | MR | Zbl
[12] Klement E. P., Mesiar R., Pap E., Triangular Norms, Kluwer Academic Pub., Boston, 2000, 220 pp. | MR | Zbl
[13] E. P. Klement, R. Mesiar (eds.), Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms, Elsevier, Amsterdam, 2005, 481 pp. | MR
[14] Orlov A. I., Nechislovaya statistika, MZ-Press, M., 2004, 513 pp.
[15] Goldenok E. E., Lukyanova N. A., Semenova D. V., “Applications of wide dependence theory in eventological scoring”, Proc. IASTED Intern. Conf. Automation Control and Inform. Technology, Control, Diagnostics, and Automation, ACTA Press, Novosibirsk–Anaheim–Calgary–Zurich, 2010, 316–322