The Wiener index of maximal outerplane graphs
Prikladnaâ diskretnaâ matematika, no. 4 (2014), pp. 112-122
Voir la notice de l'article provenant de la source Math-Net.Ru
Wiener index $W(G)$ of a connected undirected graph $G$ equals the sum of distances between all pairs of vertices in $G$. In this paper, an effective algorithm for calculating Wiener index of maximal outerplane graphs with a big number $n$ of vertices is offered. The time complexity of the algorithm is $\mathrm O(n^2)$. The algorithm is fit for manual calculation of Wiener index of small graphs, as well as for its calculation for computer generated graphs.
Mots-clés :
graph algorithm
Keywords: maximal outerplane graph, Wiener index, chordal graph, compact representation of chordal graph.
Keywords: maximal outerplane graph, Wiener index, chordal graph, compact representation of chordal graph.
@article{PDM_2014_4_a11,
author = {Y. L. Nosov},
title = {The {Wiener} index of maximal outerplane graphs},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {112--122},
publisher = {mathdoc},
number = {4},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2014_4_a11/}
}
Y. L. Nosov. The Wiener index of maximal outerplane graphs. Prikladnaâ diskretnaâ matematika, no. 4 (2014), pp. 112-122. http://geodesic.mathdoc.fr/item/PDM_2014_4_a11/