The Wiener index of maximal outerplane graphs
Prikladnaâ diskretnaâ matematika, no. 4 (2014), pp. 112-122

Voir la notice de l'article provenant de la source Math-Net.Ru

Wiener index $W(G)$ of a connected undirected graph $G$ equals the sum of distances between all pairs of vertices in $G$. In this paper, an effective algorithm for calculating Wiener index of maximal outerplane graphs with a big number $n$ of vertices is offered. The time complexity of the algorithm is $\mathrm O(n^2)$. The algorithm is fit for manual calculation of Wiener index of small graphs, as well as for its calculation for computer generated graphs.
Mots-clés : graph algorithm
Keywords: maximal outerplane graph, Wiener index, chordal graph, compact representation of chordal graph.
@article{PDM_2014_4_a11,
     author = {Y. L. Nosov},
     title = {The  {Wiener} index of maximal outerplane graphs},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {112--122},
     publisher = {mathdoc},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2014_4_a11/}
}
TY  - JOUR
AU  - Y. L. Nosov
TI  - The  Wiener index of maximal outerplane graphs
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2014
SP  - 112
EP  - 122
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2014_4_a11/
LA  - ru
ID  - PDM_2014_4_a11
ER  - 
%0 Journal Article
%A Y. L. Nosov
%T The  Wiener index of maximal outerplane graphs
%J Prikladnaâ diskretnaâ matematika
%D 2014
%P 112-122
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2014_4_a11/
%G ru
%F PDM_2014_4_a11
Y. L. Nosov. The  Wiener index of maximal outerplane graphs. Prikladnaâ diskretnaâ matematika, no. 4 (2014), pp. 112-122. http://geodesic.mathdoc.fr/item/PDM_2014_4_a11/