Computational complexity of the synthesis of composite models for Lipschitz-bounded functions
Prikladnaâ diskretnaâ matematika, no. 3 (2014), pp. 103-110

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the analysis of computational complexity of the synthesis of composite models for Lipschitz-bounded surjective functions of single variable. Composite models are some function approximation methods based on approximating via composition of functions taken from a given set. In this paper, it is proved that the problem of building strictly optimal composite model for a target functions via a given set of functions is NP-complete. Methods that are capable to build a near-optimal composition model are discussed. Some of these methods can be realized as algorithms with the polynomial computational complexity but they have a limited application.
Keywords: function composition, composition models, NP-completeness, Lipschitz-bounded, computational complexity.
@article{PDM_2014_3_a9,
     author = {I. S. Kalinnikov},
     title = {Computational complexity of the synthesis of composite models for {Lipschitz-bounded} functions},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {103--110},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2014_3_a9/}
}
TY  - JOUR
AU  - I. S. Kalinnikov
TI  - Computational complexity of the synthesis of composite models for Lipschitz-bounded functions
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2014
SP  - 103
EP  - 110
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2014_3_a9/
LA  - ru
ID  - PDM_2014_3_a9
ER  - 
%0 Journal Article
%A I. S. Kalinnikov
%T Computational complexity of the synthesis of composite models for Lipschitz-bounded functions
%J Prikladnaâ diskretnaâ matematika
%D 2014
%P 103-110
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2014_3_a9/
%G ru
%F PDM_2014_3_a9
I. S. Kalinnikov. Computational complexity of the synthesis of composite models for Lipschitz-bounded functions. Prikladnaâ diskretnaâ matematika, no. 3 (2014), pp. 103-110. http://geodesic.mathdoc.fr/item/PDM_2014_3_a9/