Computational complexity of the synthesis of composite models for Lipschitz-bounded functions
Prikladnaâ diskretnaâ matematika, no. 3 (2014), pp. 103-110
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is devoted to the analysis of computational complexity of the synthesis of composite models for Lipschitz-bounded surjective functions of single variable. Composite models are some function approximation methods based on approximating via composition of functions taken from a given set. In this paper, it is proved that the problem of building strictly optimal composite model for a target functions via a given set of functions is NP-complete. Methods that are capable to build a near-optimal composition model are discussed. Some of these methods can be realized as algorithms with the polynomial computational complexity but they have a limited application.
Keywords:
function composition, composition models, NP-completeness, Lipschitz-bounded, computational complexity.
@article{PDM_2014_3_a9,
author = {I. S. Kalinnikov},
title = {Computational complexity of the synthesis of composite models for {Lipschitz-bounded} functions},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {103--110},
publisher = {mathdoc},
number = {3},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2014_3_a9/}
}
TY - JOUR AU - I. S. Kalinnikov TI - Computational complexity of the synthesis of composite models for Lipschitz-bounded functions JO - Prikladnaâ diskretnaâ matematika PY - 2014 SP - 103 EP - 110 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2014_3_a9/ LA - ru ID - PDM_2014_3_a9 ER -
I. S. Kalinnikov. Computational complexity of the synthesis of composite models for Lipschitz-bounded functions. Prikladnaâ diskretnaâ matematika, no. 3 (2014), pp. 103-110. http://geodesic.mathdoc.fr/item/PDM_2014_3_a9/