Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2014_3_a7, author = {M. N. Nazarov}, title = {Alternative approaches to the description of classes of isomorphic graphs}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {86--97}, publisher = {mathdoc}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2014_3_a7/} }
M. N. Nazarov. Alternative approaches to the description of classes of isomorphic graphs. Prikladnaâ diskretnaâ matematika, no. 3 (2014), pp. 86-97. http://geodesic.mathdoc.fr/item/PDM_2014_3_a7/
[1] Diestel R., Graph Theory, 3rd edition, Springer Verlag, Heidelberg, 2005, 451 pp. | MR | Zbl
[2] Belov V. V., Vorobev E. M., Shatalov V. E., Teoriya grafov, Vysshaya shkola, M., 1976, 391 pp. | Zbl
[3] Zykov A. A., Osnovy teorii grafov, Nauka, M., 1987, 383 pp. | MR | Zbl
[4] Holmes M. R., Elementary Set Theory with a Universal Set, Academia, Louvain-la-Neuve, 1998, 241 pp. | MR | Zbl
[5] Aloul F. A., Ramani A., Markov I. L., Sakallah K. A., “Solving difficult instances of Boolean satisfiability in the presence of symmetry”, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, 22:9 (2003), 1117–1137 | DOI
[6] Darga P., Sakallah K., Markov I. L., “Faster symmetry discovery using sparsity of symmetries”, Proc. 45st Design Automation Conference, ACM, N.Y., 2008, 149–154
[7] Flarri R., Gruppy simmetrii. Teoriya i khimicheskie prilozheniya, Mir, M., 1983, 400 pp.
[8] Bonchev D., Rouvray D. H., Chemical Graph Theory: Introduction and Fundamentals, Gordon and Breach science publishers, N.Y., 1991, 300 pp. | Zbl
[9] King R., Khimicheskie prilozheniya topologii i teorii grafov, Mir, M., 1987, 560 pp.
[10] Sparrow M. K., “A linear algorithm for computing automorphic equivalence classes: the numerical signatures approach”, Social Networks, 15 (1993), 151–170 | DOI | MR
[11] Southwell R., Finding Symmetries in Graphs, Ph. D. thesis, University of York, UK, 2006, 109 pp.
[12] Katebi H., Sakallah K., Markov I. L., “Graph symmetry detection and canonical labelling: differences and synergies”, Proc. Turing-100, EPIC, 10, 2012, 181–195
[13] Weininger D., Weininger A., Weininger J., “SMILES. 2. Algorithm for generation of unique SMILES notation”, J. Chem. Inf. Comput. Sci., 29:2 (1989), 97–101 | DOI
[14] Kharari F., Teoriya grafov, KomKniga, M., 2006, 296 pp.
[15] Kobler J., Schoning U., Toran J., The Graph Isomorphism Problem: its Structural Complexity, Birkhauser, Berlin, 1993, 160 pp. | MR | Zbl
[16] Harary F., “A survey of the reconstruction conjecture”, Graphs and Combinatorics, Lecture Notes in Mathematics, 406, 1974, 18–28 | DOI | MR | Zbl