On the problem of circulant networks with the maximal number of nodes for any diameter
Prikladnaâ diskretnaâ matematika, no. 3 (2014), pp. 81-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

For undirected circulant networks, the problem of the maximal reachable number of nodes under given dimension and diameter of a graph is considered. In 1994, F. P. Muga proved the theorem that this number is odd for any dimension and any diameter of a circulant graph. Later, R. R. Lewis has presented a counterexample of four-dimensional circulant. In the present paper, a mistake in the proof of this theorem is pointed. Based on the new results, the early presented table of the maximal reachable orders of four-dimensional circulants is corrected.
Keywords: undirected circulant graphs, diameter, maximum order of a graph.
@article{PDM_2014_3_a6,
     author = {E. A. Monakhova and O. G. Monakhov},
     title = {On the problem of circulant networks with the maximal number of nodes for any diameter},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {81--85},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2014_3_a6/}
}
TY  - JOUR
AU  - E. A. Monakhova
AU  - O. G. Monakhov
TI  - On the problem of circulant networks with the maximal number of nodes for any diameter
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2014
SP  - 81
EP  - 85
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2014_3_a6/
LA  - ru
ID  - PDM_2014_3_a6
ER  - 
%0 Journal Article
%A E. A. Monakhova
%A O. G. Monakhov
%T On the problem of circulant networks with the maximal number of nodes for any diameter
%J Prikladnaâ diskretnaâ matematika
%D 2014
%P 81-85
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2014_3_a6/
%G ru
%F PDM_2014_3_a6
E. A. Monakhova; O. G. Monakhov. On the problem of circulant networks with the maximal number of nodes for any diameter. Prikladnaâ diskretnaâ matematika, no. 3 (2014), pp. 81-85. http://geodesic.mathdoc.fr/item/PDM_2014_3_a6/

[1] Monakhova E. A., “Strukturnye i kommunikativnye svoistva tsirkulyantnykh setei”, Prikladnaya diskretnaya matematika, 2011, no. 3(13), 92–115

[2] Bermond J.-C., Comellas F., Hsu D. F., “Distributed loop computer networks: a survey”, J. Parallel Distributed Comput., 24 (1995), 2–10 | DOI

[3] Hwang F. K., “A survey on multi-loop networks”, Theor. Comput. Sci., 299 (2003), 107–121 | DOI | MR | Zbl

[4] Lewis R. R., “The degree-diameter problem for circulant graphs of degree 8 and 9”, Electron. J. Combinator. (to appear)

[5] Horak P., “Tilings in Lee metric”, Eur. J. Combinator., 30 (2009), 480–489 | DOI | MR | Zbl

[6] Costa S. I. R., Strapasson J. E., Alves M. M. S., Carlos T. B., “Circulant graphs and tessellations on flat tori”, Linear Algebra Applicat., 432:1 (2010), 369–382 | DOI | MR | Zbl

[7] Golomb S. W., Welch L. R., “Perfect codes in the Lee metric and the packing of polyominoes”, SIAM J. Appl. Math., 18:2 (1970), 302–317 | DOI | MR | Zbl

[8] Chen S., Jia X.-D., “Undirected loop networks”, Networks, 23 (1993), 257–260 | DOI | MR | Zbl

[9] Monakhova E. A., “Optimal triple loop networks with given transmission delay: topological design and routing”, Inter. Network Optimization Conf. (INOC' 2003), Evry/Paris, France, 2003, 410–415

[10] Monakhova E. A., “Triple circulant communication networks of parallel computer systems”, Optoelectronics, Instrumentation and Data Processing, v. 3, Allerton Press Inc., N.Y., 2006, 90–101

[11] Dougherty R., Faber V., “The degree-diameter problem for several varieties of Cayley graphs, 1: the Abelian case”, SIAM J. Discrete Math., 17:3 (2004), 478–519 | DOI | MR | Zbl

[12] Muga F. P., “Undirected circulant graphs”, Inter. Symp. on Parallel Architectures, Algorithms and Networks, IEEE, 1994, 113–118 | DOI

[13] Monakhova E. A., “O postroenii tsirkulyantnykh setei razmernosti chetyre s maksimalnym chislom vershin pri lyubom diametre”, Prikladnaya diskretnaya matematika, 2013, no. 3(21), 76–85