On the problem of circulant networks with the maximal number of nodes for any diameter
Prikladnaâ diskretnaâ matematika, no. 3 (2014), pp. 81-85
Voir la notice de l'article provenant de la source Math-Net.Ru
For undirected circulant networks, the problem of the maximal reachable number of nodes under given dimension and diameter of a graph is considered. In 1994, F. P. Muga proved the theorem that this number is odd for any dimension and any diameter of a circulant graph. Later, R. R. Lewis has presented a counterexample of four-dimensional circulant. In the present paper, a mistake in the proof of this theorem is pointed. Based on the new results, the early presented table of the maximal reachable orders of four-dimensional circulants is corrected.
Keywords:
undirected circulant graphs, diameter, maximum order of a graph.
@article{PDM_2014_3_a6,
author = {E. A. Monakhova and O. G. Monakhov},
title = {On the problem of circulant networks with the maximal number of nodes for any diameter},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {81--85},
publisher = {mathdoc},
number = {3},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2014_3_a6/}
}
TY - JOUR AU - E. A. Monakhova AU - O. G. Monakhov TI - On the problem of circulant networks with the maximal number of nodes for any diameter JO - Prikladnaâ diskretnaâ matematika PY - 2014 SP - 81 EP - 85 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2014_3_a6/ LA - ru ID - PDM_2014_3_a6 ER -
E. A. Monakhova; O. G. Monakhov. On the problem of circulant networks with the maximal number of nodes for any diameter. Prikladnaâ diskretnaâ matematika, no. 3 (2014), pp. 81-85. http://geodesic.mathdoc.fr/item/PDM_2014_3_a6/