Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2014_2_a6, author = {V. M. Fomichev}, title = {Estimates for exponent of some graphs by {Frobenius's} numbers of three arguments}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {88--96}, publisher = {mathdoc}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2014_2_a6/} }
V. M. Fomichev. Estimates for exponent of some graphs by Frobenius's numbers of three arguments. Prikladnaâ diskretnaâ matematika, no. 2 (2014), pp. 88-96. http://geodesic.mathdoc.fr/item/PDM_2014_2_a6/
[1] Alfonsin J. R., The Diophantine Frobenius Problem, Oxford University Press, 2005 | MR | Zbl
[2] Sylvester J. J., “Problem 7382”, Mathematical Questions from the Educational Times, 37 (1884), 26
[3] Curtis F., “On formulas for the Frobenius number of a numerical semigroup”, Math. Scand., 67 (1990), 190–192 | MR | Zbl
[4] Heap B. R., Lynn M. S., “On a linear Diophantine problem of Frobenius: an improved algorithm”, Numer. Math., 7 (1965), 226–231 | DOI | MR | Zbl
[5] Bocker S., Liptak Z., The “money changing problem” revisited: computing the Frobenius number in time O$(ka_1)$, Technical Report No. 2004-2, Univ. of Bielefeld, Technical Faculty, 2004 | MR
[6] Fomichev V. M., “Ekvivalentnye po Frobeniusu primitivnye mnozhestva chisel”, Prikladnaya diskretnaya matematika, 2014, no. 1(23), 20–26
[7] Brauer A., “On a problem of partitions”, Am. J. Math., 64 (1942), 299–312 | DOI | MR | Zbl
[8] Sachkov V. N., Tarakanov V. E., Kombinatorika neotritsatelnykh matrits, TVP, M., 2000, 448 pp. | MR | Zbl
[9] Kogos K. G., Fomichev V. M., “Polozhitelnye svoistva neotritsatelnykh matrits”, Prikladnaya diskretnaya matematika, 2012, no. 4(18), 5–13
[10] Fomichev V. M., “Otsenki eksponentov primitivnykh grafov”, Prikladnaya diskretnaya matematika, 2011, no. 2(12), 101–112
[11] Berzh K., Teoriya grafov i eë primenenie, IL, M., 1962, 320 pp.
[12] Wielandt H., “Unzerlegbare nicht negative Matrizen”, Math. Zeitschr., 52 (1950), 642–648 | DOI | MR | Zbl