Computation of nonlinearity degree for discrete functions on primary cyclic groups
Prikladnaâ diskretnaâ matematika, no. 2 (2014), pp. 37-47
Voir la notice de l'article provenant de la source Math-Net.Ru
A method is proposed for computing the nonlinearity degree of a discrete functions defined on a cyclic group of order $p^n$. The method is based on Newton expansion for a discrete function. Theorem 1 presents the values of nonlinearity degree for all basic functions in Newton expansion. Theorems 2 and 3 illustrate number distributions for functions on cyclic groups of order $p^2$ and $p^3$ according to their nonlinearity degrees.
Keywords:
discrete functions, nonlinearity degree, Newton expansion.
@article{PDM_2014_2_a3,
author = {A. V. Cheremushkin},
title = {Computation of nonlinearity degree for discrete functions on primary cyclic groups},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {37--47},
publisher = {mathdoc},
number = {2},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2014_2_a3/}
}
A. V. Cheremushkin. Computation of nonlinearity degree for discrete functions on primary cyclic groups. Prikladnaâ diskretnaâ matematika, no. 2 (2014), pp. 37-47. http://geodesic.mathdoc.fr/item/PDM_2014_2_a3/