Computation of nonlinearity degree for discrete functions on primary cyclic groups
Prikladnaâ diskretnaâ matematika, no. 2 (2014), pp. 37-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method is proposed for computing the nonlinearity degree of a discrete functions defined on a cyclic group of order $p^n$. The method is based on Newton expansion for a discrete function. Theorem 1 presents the values of nonlinearity degree for all basic functions in Newton expansion. Theorems 2 and 3 illustrate number distributions for functions on cyclic groups of order $p^2$ and $p^3$ according to their nonlinearity degrees.
Keywords: discrete functions, nonlinearity degree, Newton expansion.
@article{PDM_2014_2_a3,
     author = {A. V. Cheremushkin},
     title = {Computation of nonlinearity degree for discrete functions on primary cyclic groups},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {37--47},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2014_2_a3/}
}
TY  - JOUR
AU  - A. V. Cheremushkin
TI  - Computation of nonlinearity degree for discrete functions on primary cyclic groups
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2014
SP  - 37
EP  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2014_2_a3/
LA  - ru
ID  - PDM_2014_2_a3
ER  - 
%0 Journal Article
%A A. V. Cheremushkin
%T Computation of nonlinearity degree for discrete functions on primary cyclic groups
%J Prikladnaâ diskretnaâ matematika
%D 2014
%P 37-47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2014_2_a3/
%G ru
%F PDM_2014_2_a3
A. V. Cheremushkin. Computation of nonlinearity degree for discrete functions on primary cyclic groups. Prikladnaâ diskretnaâ matematika, no. 2 (2014), pp. 37-47. http://geodesic.mathdoc.fr/item/PDM_2014_2_a3/

[1] Cheremushkin A. V., “Additivnyi podkhod k opredeleniyu stepeni nelineinosti diskretnoi funktsii na tsiklicheskoi gruppe primarnogo poryadka”, Prikladnaya diskretnaya matematika, 2013, no. 2(20), 26–38

[2] Granville A., “Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers”, Organic Math. (Burnaby, BC, 1995), CMS Conf. Proc., 20, Amer. Math. Soc., Providence, RI, 1997, 253–276 | MR | Zbl