On ranks of subsets in the space of binary vectors admitting an embedding of a~Steiner system $S(2,4,v)$
Prikladnaâ diskretnaâ matematika, no. 1 (2014), pp. 73-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

A bound for the rank of a subset $X$ in the vector space $\mathbb F_2^n$ is obtained via the covering radius of the code lying in the subspace of linear dependencies of vectors in $X$. Also, an upper bound for the covering radius of a code generated by the incidence matrix of a Steiner system $S(2,4,v)$ is obtained. Precice and asymptotic bounds for the rank of a subset $X$ in the vector space $\mathbb F_2^n$ admitting an embedding of a Steiner system $S(2,4,v)$ are obtained too.
Keywords: rank, affine rank, bounds, linear subspace, linear code, covering radius, Steiner system, Boolean functions, spectrum support.
@article{PDM_2014_1_a7,
     author = {Y. V. Tarannikov},
     title = {On ranks of subsets in the space of binary vectors admitting an embedding of {a~Steiner} system $S(2,4,v)$},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {73--76},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2014_1_a7/}
}
TY  - JOUR
AU  - Y. V. Tarannikov
TI  - On ranks of subsets in the space of binary vectors admitting an embedding of a~Steiner system $S(2,4,v)$
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2014
SP  - 73
EP  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2014_1_a7/
LA  - ru
ID  - PDM_2014_1_a7
ER  - 
%0 Journal Article
%A Y. V. Tarannikov
%T On ranks of subsets in the space of binary vectors admitting an embedding of a~Steiner system $S(2,4,v)$
%J Prikladnaâ diskretnaâ matematika
%D 2014
%P 73-76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2014_1_a7/
%G ru
%F PDM_2014_1_a7
Y. V. Tarannikov. On ranks of subsets in the space of binary vectors admitting an embedding of a~Steiner system $S(2,4,v)$. Prikladnaâ diskretnaâ matematika, no. 1 (2014), pp. 73-76. http://geodesic.mathdoc.fr/item/PDM_2014_1_a7/

[1] Cohen G., Honkala I., Litsyn S., Lobstein A., Covering codes, Elsevier Science, 1997 | MR | Zbl

[2] Chashkin A. V., Diskretnaya matematika, Akademiya, M., 2012

[3] Zinovev V. A., Zinovev D. V., “Sistemy Shteinera $S(v,k,k-1)$: komponenty i rang”, Problemy peredachi informatsii, 47:2 (2011), 52–71 | MR

[4] Kovalevskaya D. I., Soloveva F. I., “Sistemy chetverok Shteinera malykh rangov i rasshirennye sovershennye dvoichnye kody”, Diskretnyi analiz i issledovanie operatsii, 20:4 (2013), 46–64 | MR

[5] Tarannikov Yu. V., Kombinatornye svoistva diskretnykh struktur i prilozheniya k kriptologii, MTsNMO, M., 2011

[6] Reid C., Rosa A., “Steiner systems $S(2,4,v)$ – a survey”, Electron. J. Combinator., 17 (2010), DS18 | Zbl

[7] Tarannikov Yu. V., “O znacheniyakh affinnogo ranga nositelya spektra platovidnoi funktsii”, Diskretnaya matematika, 18:3 (2006), 120–137 | DOI | MR | Zbl

[8] Urbanovich T. A., O dizainakh spetsialnogo vida na podmnozhestvakh buleva kuba, Diplomnaya rabota, Mekhaniko-matematicheskii fakultet MGU im. M. V. Lomonosova, M., 2012