Primitive sets of numbers being equivalent by Frobenius
Prikladnaâ diskretnaâ matematika, no. 1 (2014), pp. 20-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Equivalence of primitive sets of natural numbers is investigated in connection with the Diophantine Frobenius problem. The equivalence is used for simplifying calculations of Frobenius number $g(a_1,\dots,a_k)$ and of the whole set of numbers that are not contained in the additive semigroup generated by a set $\{a_1,\dots,a_k\}$.
Keywords: Frobenius number, primitive set, additive semigroup generated by set of numbers.
@article{PDM_2014_1_a2,
     author = {V. M. Fomichev},
     title = {Primitive sets of numbers being equivalent by {Frobenius}},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {20--26},
     year = {2014},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2014_1_a2/}
}
TY  - JOUR
AU  - V. M. Fomichev
TI  - Primitive sets of numbers being equivalent by Frobenius
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2014
SP  - 20
EP  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/PDM_2014_1_a2/
LA  - ru
ID  - PDM_2014_1_a2
ER  - 
%0 Journal Article
%A V. M. Fomichev
%T Primitive sets of numbers being equivalent by Frobenius
%J Prikladnaâ diskretnaâ matematika
%D 2014
%P 20-26
%N 1
%U http://geodesic.mathdoc.fr/item/PDM_2014_1_a2/
%G ru
%F PDM_2014_1_a2
V. M. Fomichev. Primitive sets of numbers being equivalent by Frobenius. Prikladnaâ diskretnaâ matematika, no. 1 (2014), pp. 20-26. http://geodesic.mathdoc.fr/item/PDM_2014_1_a2/

[1] Sylvester J. J., “Problem 7382”, Mathematical Questions from the Educational Times, 37 (1884), 26

[2] Curtis F., “On formulas for the Frobenius number of a numerical semigroup”, Math. Scand., 67 (1990), 190–192 | MR | Zbl

[3] Fomichev V. M., “Ekvivalentnost primitivnykh mnozhestv”, Prikladnaya diskretnaya matematika. Prilozhenie, 2013, no. 6, 20–24

[4] Alfonsin J. R., The Diophantine Frobenius Problem, Oxford University Press, 2005 | MR | Zbl

[5] Heap B. R., Lynn M. S., “A graph-theoretic algorithm for the solution of a linear Diophantine problem of Frobenius”, Numerische Math., 6 (1964), 346–354 | DOI | MR | Zbl

[6] Heap B. R., Lynn M. S., “On a linear Diophantine problem of Frobenius: an improved algorithm”, Numerische Math., 7 (1965), 226–231 | DOI | MR | Zbl

[7] Bogart C., Calculating Frobenius numbers with Boolean Toeplitz matrix multiplication, For Dr. Cull, CS 523, Oregon State University, March 17, 2009

[8] Nijenhuis M., “A minimal-path algorithm for the ‘money changing problem’ ”, Am. Math. Monthly, 86 (1979), 832–835 | DOI | MR | Zbl

[9] Bocker S., Liptak Z., The “money changing problem” revisited: computing the Frobenius number in time O$(ka_1)$, Technical Report No. 2004-2, Univ. of Bielefeld, Technical Faculty, 2004 | MR