Primitive sets of numbers being equivalent by Frobenius
Prikladnaâ diskretnaâ matematika, no. 1 (2014), pp. 20-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

Equivalence of primitive sets of natural numbers is investigated in connection with the Diophantine Frobenius problem. The equivalence is used for simplifying calculations of Frobenius number $g(a_1,\dots,a_k)$ and of the whole set of numbers that are not contained in the additive semigroup generated by a set $\{a_1,\dots,a_k\}$.
Keywords: Frobenius number, primitive set, additive semigroup generated by set of numbers.
@article{PDM_2014_1_a2,
     author = {V. M. Fomichev},
     title = {Primitive sets of numbers being equivalent by {Frobenius}},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {20--26},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2014_1_a2/}
}
TY  - JOUR
AU  - V. M. Fomichev
TI  - Primitive sets of numbers being equivalent by Frobenius
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2014
SP  - 20
EP  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2014_1_a2/
LA  - ru
ID  - PDM_2014_1_a2
ER  - 
%0 Journal Article
%A V. M. Fomichev
%T Primitive sets of numbers being equivalent by Frobenius
%J Prikladnaâ diskretnaâ matematika
%D 2014
%P 20-26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2014_1_a2/
%G ru
%F PDM_2014_1_a2
V. M. Fomichev. Primitive sets of numbers being equivalent by Frobenius. Prikladnaâ diskretnaâ matematika, no. 1 (2014), pp. 20-26. http://geodesic.mathdoc.fr/item/PDM_2014_1_a2/

[1] Sylvester J. J., “Problem 7382”, Mathematical Questions from the Educational Times, 37 (1884), 26

[2] Curtis F., “On formulas for the Frobenius number of a numerical semigroup”, Math. Scand., 67 (1990), 190–192 | MR | Zbl

[3] Fomichev V. M., “Ekvivalentnost primitivnykh mnozhestv”, Prikladnaya diskretnaya matematika. Prilozhenie, 2013, no. 6, 20–24

[4] Alfonsin J. R., The Diophantine Frobenius Problem, Oxford University Press, 2005 | MR | Zbl

[5] Heap B. R., Lynn M. S., “A graph-theoretic algorithm for the solution of a linear Diophantine problem of Frobenius”, Numerische Math., 6 (1964), 346–354 | DOI | MR | Zbl

[6] Heap B. R., Lynn M. S., “On a linear Diophantine problem of Frobenius: an improved algorithm”, Numerische Math., 7 (1965), 226–231 | DOI | MR | Zbl

[7] Bogart C., Calculating Frobenius numbers with Boolean Toeplitz matrix multiplication, For Dr. Cull, CS 523, Oregon State University, March 17, 2009

[8] Nijenhuis M., “A minimal-path algorithm for the ‘money changing problem’ ”, Am. Math. Monthly, 86 (1979), 832–835 | DOI | MR | Zbl

[9] Bocker S., Liptak Z., The “money changing problem” revisited: computing the Frobenius number in time O$(ka_1)$, Technical Report No. 2004-2, Univ. of Bielefeld, Technical Faculty, 2004 | MR