Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2013_4_a5, author = {V. V. Bykova}, title = {On the asymptotic solution of a~special type recurrence relations and the {Kullmann--Luckhardt's} technology}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {56--66}, publisher = {mathdoc}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2013_4_a5/} }
TY - JOUR AU - V. V. Bykova TI - On the asymptotic solution of a~special type recurrence relations and the Kullmann--Luckhardt's technology JO - Prikladnaâ diskretnaâ matematika PY - 2013 SP - 56 EP - 66 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2013_4_a5/ LA - ru ID - PDM_2013_4_a5 ER -
V. V. Bykova. On the asymptotic solution of a~special type recurrence relations and the Kullmann--Luckhardt's technology. Prikladnaâ diskretnaâ matematika, no. 4 (2013), pp. 56-66. http://geodesic.mathdoc.fr/item/PDM_2013_4_a5/
[1] Kormen T., Leizerson Ch., Rivest R., Algoritmy: postroenie i analiz, Vilyams, M., 2012
[2] Otpuschennikov I. V., Semënov A. A., “Tekhnologiya translyatsii kombinatornykh problem v bulevy uravneniya”, Prikladnaya diskretnaya matematika, 2011, no. 1(11), 96–115
[3] Vsemirnov M. A., Girsh E. A., Dantsin E. Ya., Ivanov S. V., “Algoritmy dlya propozitsionalnoi vypolnimosti i verkhnie otsenki ikh slozhnosti”, Teoriya slozhnosti vychislenii, VI, Zap. nauchn. sem. POMI, 277, SPb., 2001, 14–46 | MR | Zbl
[4] Davis M., Logemann G., and Loveland D., “A machine program for theorem-proving”, Comm. ACM, 5:7 (1962), 394–397 | DOI | MR | Zbl
[5] Davis M. and Putman H., “A computing procedure for quantification theory”, J. ACM, 7:3 (1960), 201–215 | DOI | MR | Zbl
[6] Franco J. and Gelder A. V., “A perspective on certain polynomial-time solvable classes of Satisfiability”, Discr. Appl. Math., 125:2–3 (2003), 177–214 | DOI | MR | Zbl
[7] Alekseev V. B., Nosov V. A., “NP-polnye zadachi i ikh polinomialnye varianty. Obzor”, Obozrenie prikladnoi i promyshlennoi matematiki, 4:2 (1997), 165–193
[8] Hirsch E. A., “New worst-case upper bounds for SAT”, J. Automated Reasoning, 24:4 (2000), 397–420 | DOI | MR | Zbl
[9] Kulikov A. S., Kutskov K., “Novye verkhnie otsenki dlya zadachi maksimalnoi vypolnimosti”, Diskretnaya matematika, 21:1 (2009), 139–157 | DOI | MR | Zbl
[10] Bykova V. V., “Matematicheskie metody analiza rekursivnykh algoritmov”, Zhurnal Sibirskogo federalnogo universiteta. Ser. Matematika i fizika, 1:3 (2008), 236–246
[11] Goloveshkin V. A., Ulyanov M. V., Teoriya rekursii dlya programmistov, Fizmatlit, M., 2006
[12] Gelfond A. O., Ischislenie konechnykh raznostei, Fizmatlit, M., 1959 | MR
[13] Grekhem R., Knut D., Patashnik O., Konkretnaya matematika. Osnovanie informatiki, Binom. Lab. znanii, M., 2006
[14] Bykova V. V., “Elastichnost algoritmov”, Prikladnaya diskretnaya matematika, 2010, no. 2(8), 87–95
[15] Poincare H., “Sur les equations lineaires aux differentielles ordinaires et aux differences finies”, Amer. J. Math., 7 (1885), 203–258 | DOI | MR
[16] Perron O., “Uber einen Satz des Herrn Poincare”, J. Reine Angewand. Math., 136 (1909), 17–34
[17] Bakhvalov N. S., Chislennye metody, Binom. Lab. znanii, M., 2006
[18] Kullmann O., “New methods for 3-SAT decision and worst-case analysis”, Theor. Computer Sci., 223 (1999), 1–72 | DOI | MR | Zbl
[19] Kullmann O., Luckhardt H., Deciding propositional tautologies: Algorithms and their complexity, Preprint, , 1997 http://www.cs.swan.ac.uk/~csoliver
[20] Kulikov A. S., Fedin S. S., “Avtomaticheskie dokazatelstva verkhnikh otsenok na vremya raboty algoritmov rasschepleniya”, Teoriya slozhnosti vychislenii, IX, Zap. nauchn. sem. POMI, 316, SPb., 2004, 111–128 | MR | Zbl