$V$-graphs and their relation to the problem of locating objects in a~plane
Prikladnaâ diskretnaâ matematika, no. 4 (2013), pp. 41-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

For two congruent figures with no common interior points, the locations in a plane are studied. A line being parallel to a shift vector intersects these pieces in two identical systems of intervals shifted by this vector. An oriented $V_n$-graph is constructed, its vertices correspond to the topologically different variants of relative position of two systems of $n$ intervals, and the edges correspond to the allowable transitions between vertices. The term of $W_n$-graph is introduced as a minimal transitive graph which contains $V_n$-graph augmented with an incident vertex. The properties of $V_n$-graphs and $W_n$-graphs are proved.
Keywords: placement of figures in a plane oriented graph, $W$-graph, the Catalan numbers, Dyck path, system slots
Mots-clés : congruent figures.
@article{PDM_2013_4_a3,
     author = {I. G. Velichko and A. I. Zinchenko},
     title = {$V$-graphs and their relation to the problem of locating objects in a~plane},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {41--46},
     publisher = {mathdoc},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2013_4_a3/}
}
TY  - JOUR
AU  - I. G. Velichko
AU  - A. I. Zinchenko
TI  - $V$-graphs and their relation to the problem of locating objects in a~plane
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2013
SP  - 41
EP  - 46
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2013_4_a3/
LA  - ru
ID  - PDM_2013_4_a3
ER  - 
%0 Journal Article
%A I. G. Velichko
%A A. I. Zinchenko
%T $V$-graphs and their relation to the problem of locating objects in a~plane
%J Prikladnaâ diskretnaâ matematika
%D 2013
%P 41-46
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2013_4_a3/
%G ru
%F PDM_2013_4_a3
I. G. Velichko; A. I. Zinchenko. $V$-graphs and their relation to the problem of locating objects in a~plane. Prikladnaâ diskretnaâ matematika, no. 4 (2013), pp. 41-46. http://geodesic.mathdoc.fr/item/PDM_2013_4_a3/

[1] Stoyan Yu. G., “$\Phi$-function and its basic properties”, Dopovidi NAN Ukraïni, 1:1 (2001), 112–117 | MR

[2] Burke E. K., “Complete and robust no-fit polygon generation for the irregular stock cutting problem”, Eur. J. Operat. Res., 179:1 (2007), 27–49 | DOI | Zbl

[3] Avvakumov V. D., “Optimalnoe razmeschenie ploskikh ob'ektov proizvolnoi geometricheskoi formy”, Informatsionnye tekhnologii, 2009, no. 5, 31–35

[4] Velichko . G., Zinchenko A. ., “Teorema pro potyag ta ïï zastosuvannya dlya zadach regulyarnogo rozkroyu”, Visnik Kharkivskogo natsionalnogo universitetu, 1:960 (2011), 47–54

[5] Pyatnitskaya G. N., Sinitsyn I. G., “Beskonechnye marshruty v grafe i optimalnoe razmeschenie odnotipnykh figur v beskonechnoi uzkoi polose”, Zhurn. vychisl. matem. i matem. fiz., 19:5 (1979), 1304–1312 | MR | Zbl

[6] Onlain-entsiklopediya tselochislennykh posledovatelnostei, , 2013 http://oeis.org/A002054

[7] Onlain-entsiklopediya tselochislennykh posledovatelnostei, , 2013 http://oeis.org/A005700