Permutation polynomials over residue class rings
Prikladnaâ diskretnaâ matematika, no. 4 (2013), pp. 16-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

Problems of finding inverse for a permutation polynomial over the ring $\mathbb Z_{p^k}$ for prime $p$ and any $k>1$ are studied. Necessary and sufficient conditions for two permutation polynomials to be inverse polynomials modulo prime power are found. Given a known inverse polynomial modulo $p^2$, a formula for inverse polynomial modulo $p^k$ is pointed. Given a pair of inverse polynomials modulo $p^k$, a method for constructing other such pairs is proposed.
Mots-clés : permutation polynomials, polynomial permutations.
Keywords: residue class rings
@article{PDM_2013_4_a1,
     author = {A. V. Karpov},
     title = {Permutation polynomials over residue class rings},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {16--21},
     publisher = {mathdoc},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2013_4_a1/}
}
TY  - JOUR
AU  - A. V. Karpov
TI  - Permutation polynomials over residue class rings
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2013
SP  - 16
EP  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2013_4_a1/
LA  - ru
ID  - PDM_2013_4_a1
ER  - 
%0 Journal Article
%A A. V. Karpov
%T Permutation polynomials over residue class rings
%J Prikladnaâ diskretnaâ matematika
%D 2013
%P 16-21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2013_4_a1/
%G ru
%F PDM_2013_4_a1
A. V. Karpov. Permutation polynomials over residue class rings. Prikladnaâ diskretnaâ matematika, no. 4 (2013), pp. 16-21. http://geodesic.mathdoc.fr/item/PDM_2013_4_a1/

[1] Hermite C., “Sur les fonctions de sept lettres”, C. R. Acad. Sci. Paris, 57 (1863), 750–757

[2] Dickson L. E., History of the Theory of Numbers, v. 3, Carnegie Institute, Washington, D.C., 1923 | Zbl

[3] Lidl R., Niderraiter G., Konechnye polya, v. 1, 2, Mir, M., 1988 | Zbl

[4] Meschaninov D. G., “Metod postroeniya polinomov dlya funktsii $k$-znachnoi logiki”, Diskretnaya matematika, 7:3 (1995), 48–60 | MR | Zbl

[5] Caceres A., Colon-Reyes O., Some criteria for permutation binomials, Preprint, University of Puerto Rico at Humacao, 1997

[6] Akbary A., Wang Q., “On some permutation polynomials over finite fields”, Intern. J. Math. Math. Sci., 2005:16 (2005), 2631–2640 | DOI | MR | Zbl

[7] Diaz-Vargas J., Rubio-Barrios C. J., Sozaya-Chan J. A., Tapia-Recillas H., “Self-invertible permutation polynomials over $\mathbb Z_m$”, Intern. J. Algebra, 5:23 (2011), 1135–1153 | MR | Zbl

[8] Ryu J., Takeshita O. Y., “On quadratic inverses for quadratic permutation polynomials over integer rings”, IEEE Trans. Inform. Theory, 52:3 (2006), 1254–1260 | DOI | MR

[9] Wu B., Liu Z., The compositional inverse of a class of bilinear permutation polynomials over finite fields of characteristic 2, January 2013, arXiv: 1301.0070 | MR

[10] Varadharajan V., “Cryptosystems based on permutation polynomials”, Intern. J. Computer Math., 23:3–4 (1988), 237–250 | DOI | Zbl

[11] Sun J., Takeshita O. Y., “Interleavers for turbo codes using permutation polynomials over integer rings”, IEEE Trans. Inform. Theory, 51:1 (2005), 101–119 | DOI | MR

[12] Frisch S., Krenn D., Sylow $p$-groups of polynomial permutations on the integers mod $p^n$, December 2011., arXiv: 1112.1228

[13] Li S., Permutation polynomials modulo $m$, February 2008, arXiv: math/0509523

[14] Rivest R. L., “Permutation polynomials modulo $2^w$”, Finite Fields and Their Applications, 7:2 (2001), 287–292 | DOI | MR | Zbl

[15] Singh R. P., Maity S., Permutation polynomials modulo $p^n$, , 2009 http://eprint.iacr.org/2009/393.pdf

[16] Karpov A. V., “Obraschenie perestanovochnogo mnogochlena nad primarnym koltsom”, Mezhdunar. konf. “Algebra i logika: teoriya i prilozheniya”, Tez. dokl., SFU, Krasnoyarsk, 2013, 60–61