Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2013_3_a11, author = {A. S. Ryzhov}, title = {Implementing {Coppersmith} algorithm for binary matrix sequences on clusters}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {112--122}, publisher = {mathdoc}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2013_3_a11/} }
A. S. Ryzhov. Implementing Coppersmith algorithm for binary matrix sequences on clusters. Prikladnaâ diskretnaâ matematika, no. 3 (2013), pp. 112-122. http://geodesic.mathdoc.fr/item/PDM_2013_3_a11/
[1] Coppersmith D., “Fast evaluation of logarithms in fields of characteristic two”, IEEE Trans. Inform. Theory, IT-30:4 (1984), 587–594 | DOI | MR | Zbl
[2] Montgomery P. L., “A block Lanczos algorithm for finding dependencies over $\mathrm{GF}(2)$”, EUROCRYPT' 95, LNCS, 921, 1995, 106–120 | MR | Zbl
[3] Coppersmith D., “Solving linear equations over $\mathrm{GF}(2)$ via block Wiedemann algorithm”, Math. Comp., 62:205 (1994), 333–350 | MR | Zbl
[4] Wiedemann D. H., “Solving sparse linear equations over finite fields”, IEEE Trans. Inform. Theory, IT-32:1 (1986), 54–62 | DOI | MR | Zbl
[5] Thomé E., “Subquadratic computation of vector generating polynomials and improvement of the block Wiedemann algorithm”, J. Symbolic Comput., 33 (2002), 757–775 | DOI | MR | Zbl
[6] Akho A., Khopkroft D., Ulman Dzh., Postroenie i analiz vychislitelnykh algoritmov, Mir, M., 1979, 536 pp. | MR
[7] Beckerman B., Labahn G., “A uniform approach for the fast computation of matrix-type Padé approximants”, SIAM J. Matrix Anal. Appl., 15:3 (1994), 804–823 | DOI | MR | Zbl