Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2013_2_a7, author = {V. V. Gotsulenko}, title = {A formula for the number of combinations with constrained repetitions and its application}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {71--77}, publisher = {mathdoc}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2013_2_a7/} }
V. V. Gotsulenko. A formula for the number of combinations with constrained repetitions and its application. Prikladnaâ diskretnaâ matematika, no. 2 (2013), pp. 71-77. http://geodesic.mathdoc.fr/item/PDM_2013_2_a7/
[1] Vilenkin N. Ya., Kombinatorika, Nauka, M., 1969, 323 pp. | MR | Zbl
[2] Novikov F. A., Diskretnaya matematika dlya programmistov, Piter, SPb., 2009, 384 pp.
[3] Petrovskii A. B., Prostranstva mnozhestv i multimnozhestv, URSS, M., 2003, 248 pp.
[4] MacMahon P. A., Combinatory analysis, The University Press, Cambridge, 1915, 296 pp.
[5] Juric Z., Siljak H., “A new formula for the number of combinations and permutations of multisets”, Appl. Math. Sci., 5:18 (2011), 875–881 | MR | Zbl
[6] Zatorskii R. A., “Podschet $m$-podmultimnozhestv cherez ikh vtorichnye spetsifikatsii”, Kombinatornyi analiz, 7, MGU, M., 1986, 136–145 | MR
[7] Polia G., Sege G., Zadachi i teoremy iz analiza, Nauka, M., 1978, 391 pp.