Lower and upper bounds for the affinity order of transformations of Boolean vector spaces
Prikladnaâ diskretnaâ matematika, no. 2 (2013), pp. 14-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Phi_n$ be the set of all transformations of the Boolean vector space $V_n$. Affinity order of a mapping $F\in\Phi_n$ is the least order of the set $V_n$ partition with the property: for every its block there exists an affine mapping $A\colon V_n\to V_n$ being equivalent to $F$ on this block. Affinity order of $\Phi_n$ is the greatest order of $F\in\Phi_n$. Upper and lower bounds for the affinity order of $\Phi_n$ are given in the article. These results can be used for estimating complexity of some techniques in Boolean equations resolving.
Keywords: transformation of Boolean vector space, affine mapping, solution complexity of Boolean equations.
@article{PDM_2013_2_a1,
     author = {S. P. Gorshkov and A. V. Dvinyaninov},
     title = {Lower and upper bounds for the affinity order of transformations of {Boolean} vector spaces},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {14--18},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2013_2_a1/}
}
TY  - JOUR
AU  - S. P. Gorshkov
AU  - A. V. Dvinyaninov
TI  - Lower and upper bounds for the affinity order of transformations of Boolean vector spaces
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2013
SP  - 14
EP  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2013_2_a1/
LA  - ru
ID  - PDM_2013_2_a1
ER  - 
%0 Journal Article
%A S. P. Gorshkov
%A A. V. Dvinyaninov
%T Lower and upper bounds for the affinity order of transformations of Boolean vector spaces
%J Prikladnaâ diskretnaâ matematika
%D 2013
%P 14-18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2013_2_a1/
%G ru
%F PDM_2013_2_a1
S. P. Gorshkov; A. V. Dvinyaninov. Lower and upper bounds for the affinity order of transformations of Boolean vector spaces. Prikladnaâ diskretnaâ matematika, no. 2 (2013), pp. 14-18. http://geodesic.mathdoc.fr/item/PDM_2013_2_a1/

[1] Fomichëv V. M., Diskretnaya matematika i kriptologiya, Dialog-MIFI, M., 2003, 397 pp.