Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2013_1_a6, author = {A. R. Urakov and T. V. Timeryaev}, title = {All-pairs shortest paths algorithm for high-dimensional sparse graphs}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {84--92}, publisher = {mathdoc}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2013_1_a6/} }
A. R. Urakov; T. V. Timeryaev. All-pairs shortest paths algorithm for high-dimensional sparse graphs. Prikladnaâ diskretnaâ matematika, no. 1 (2013), pp. 84-92. http://geodesic.mathdoc.fr/item/PDM_2013_1_a6/
[1] Bellman R., “On a routing problem”, Quarter. Appl. Math., 1958, no. 16, 87–90 | MR | Zbl
[2] Floyd R. W., “Algorithm 97: Shortest Path”, Comm. ACM, 5:6 (1962), 345 | DOI
[3] Dijkstra E. W., “A note on two problems in connexion with graphs”, Numer. Math., 1959, no. 1, 269–271 | DOI | MR | Zbl
[4] Kormen T. Kh. i dr., Algoritmy: postroenie i analiz, Vilyams, M., 2006, 1296 pp.
[5] Johnson D. B., “Efficient algorithms for shortest paths in sparse graph”, J. ACM, 1977, no. 24, 1–13 | DOI | MR | Zbl
[6] Geisberger R., Sanders P., et al., “Contraction hierarchies: faster and simpler hierarchical routing in road networks”, WEA 2008, International Workshop on Experimental Algorithms, Springer, Provincetown, 2008, 319–333
[7] 9th DIMACS Implementation Challenge — Shortest Paths, (data obrascheniya: noyabr 2012) http://www.dis.uniroma1.it/challenge9/download.shtml
[8] Urakov A. R., Timeryaev T. V., “Ispolzovanie osobennostei vzveshennykh grafov dlya bolee bystrogo opredeleniya ikh kharakteristik”, Prikladnaya diskretnaya matematika, 2012, no. 2, 95–99