Binary representations of underdetermined data and superimposed codes
Prikladnaâ diskretnaâ matematika, no. 1 (2013), pp. 17-33

Voir la notice de l'article provenant de la source Math-Net.Ru

For underdetermined data, binary representations are defined, making it possible to reconstruct the initial data entirely (not only their specifications) and being fairly compact. To solve the problem of their design, some special matrices called selective ones are introduced and studied. They generalize the disjunct (cover-free) matrices widely applied in Computer Science. Some characteristics of selective matrices and estimates of data representation length via some data parameters are investigated. Problems related to the complexity of representations design are considered too.
Keywords: underdetermined data, binary representation, sets system basis, representation length, disjunct matrix, superimposed code, cover-free family
Mots-clés : compression, polynomial algorithm.
@article{PDM_2013_1_a2,
     author = {L. A. Sholomov},
     title = {Binary representations of underdetermined data and superimposed codes},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {17--33},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2013_1_a2/}
}
TY  - JOUR
AU  - L. A. Sholomov
TI  - Binary representations of underdetermined data and superimposed codes
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2013
SP  - 17
EP  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2013_1_a2/
LA  - ru
ID  - PDM_2013_1_a2
ER  - 
%0 Journal Article
%A L. A. Sholomov
%T Binary representations of underdetermined data and superimposed codes
%J Prikladnaâ diskretnaâ matematika
%D 2013
%P 17-33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2013_1_a2/
%G ru
%F PDM_2013_1_a2
L. A. Sholomov. Binary representations of underdetermined data and superimposed codes. Prikladnaâ diskretnaâ matematika, no. 1 (2013), pp. 17-33. http://geodesic.mathdoc.fr/item/PDM_2013_1_a2/