On the upper bound for the density of any injective vector
Prikladnaâ diskretnaâ matematika, no. 1 (2013), pp. 117-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, the Stern's sequence $b_1 = 1,$ $b_2 = 1,$ $b_3 = 2,$ $b_4 = 3,$ $b_5 = 6,$ $b_6 = 11,$ $b_7 = 20,$ $b_8 = 40, \ldots$ is considered, and the upper and lower bounds for $b_i$ are determined. Supposing that the vector $(a_1, \ldots, a_r)$, where $r \geq 4,$ $a_1 = b_r$, $a_2 = b_r + b_{r - 1}$, $\ldots$, $a_r = \sum\limits_{i = 1}^r b_i$, is the injective one having the least maximum element among all other injective vectors of length $r$, the upper bound for density of any injective vector is stated.
Keywords: density of injective vector, Stern's sequence.
@article{PDM_2013_1_a10,
     author = {D. M. Murin},
     title = {On the upper bound for the density of any injective vector},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {117--124},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2013_1_a10/}
}
TY  - JOUR
AU  - D. M. Murin
TI  - On the upper bound for the density of any injective vector
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2013
SP  - 117
EP  - 124
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2013_1_a10/
LA  - ru
ID  - PDM_2013_1_a10
ER  - 
%0 Journal Article
%A D. M. Murin
%T On the upper bound for the density of any injective vector
%J Prikladnaâ diskretnaâ matematika
%D 2013
%P 117-124
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2013_1_a10/
%G ru
%F PDM_2013_1_a10
D. M. Murin. On the upper bound for the density of any injective vector. Prikladnaâ diskretnaâ matematika, no. 1 (2013), pp. 117-124. http://geodesic.mathdoc.fr/item/PDM_2013_1_a10/

[1] Murin D. M., “O poryadke rosta chisla in'ektivnykh i sverkhrastuschikh ryukzachnykh vektorov”, Modelirovanie i analiz informatsionnykh sistem, 19:3 (2012), 103–115 | Zbl

[2] Knut D., Iskusstvo programmirovaniya, v. 1, Izdatelskii dom «Vilyams», M., 2008

[3] Stern M. A., “Aufgaben”, J. Reine Angew. Math., 1838, no. 18, 100 | DOI | Zbl

[4] Sloane N. J. A., Plouffe S., The Encyclopedia of Integer Sequences, Academic Press, San Diego, 1995 | MR | Zbl

[5] Kreweras G., “Sur quelques problemes relatifs au vote pondere [Some problems of weighted voting]”, Math. Sci. Humaines, 1983, no. 84, 45–63 | MR | Zbl

[6] Chetcuti-Sperandio N., Lagrue S., “How to choose weightings to avoid collisions in a restricted penalty logic”, Principles of Knowledge Representation and Reasoning, Proc. 11-th International Conf., AAAI Press, Sydney, 2008, 340–347

[7] Rodriguez A., $\acute{E}$tude des propri$\acute{e}$t$\acute{e}$s d'une suite num$\acute{e}$rique li$\acute{e}$e $\grave{a}$ un probl$\acute{e}$me de vote pond$\acute{e}$r$\acute{e}$, Th$\grave{e}$se de docteur-ing$\acute{e}$nieur, Universit$\acute{e}$ Pierre et Marie Curie, 1983

[8] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Fizmatlit, M., 2001

[9] Nikolenko S., Kriptografiya i reshetki, , 2009 http://logic.pdmi.ras.ru/s̃ergey/teaching/cscryp09/05-lattices.pdf