Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2013_1_a10, author = {D. M. Murin}, title = {On the upper bound for the density of any injective vector}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {117--124}, publisher = {mathdoc}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2013_1_a10/} }
D. M. Murin. On the upper bound for the density of any injective vector. Prikladnaâ diskretnaâ matematika, no. 1 (2013), pp. 117-124. http://geodesic.mathdoc.fr/item/PDM_2013_1_a10/
[1] Murin D. M., “O poryadke rosta chisla in'ektivnykh i sverkhrastuschikh ryukzachnykh vektorov”, Modelirovanie i analiz informatsionnykh sistem, 19:3 (2012), 103–115 | Zbl
[2] Knut D., Iskusstvo programmirovaniya, v. 1, Izdatelskii dom «Vilyams», M., 2008
[3] Stern M. A., “Aufgaben”, J. Reine Angew. Math., 1838, no. 18, 100 | DOI | Zbl
[4] Sloane N. J. A., Plouffe S., The Encyclopedia of Integer Sequences, Academic Press, San Diego, 1995 | MR | Zbl
[5] Kreweras G., “Sur quelques problemes relatifs au vote pondere [Some problems of weighted voting]”, Math. Sci. Humaines, 1983, no. 84, 45–63 | MR | Zbl
[6] Chetcuti-Sperandio N., Lagrue S., “How to choose weightings to avoid collisions in a restricted penalty logic”, Principles of Knowledge Representation and Reasoning, Proc. 11-th International Conf., AAAI Press, Sydney, 2008, 340–347
[7] Rodriguez A., $\acute{E}$tude des propri$\acute{e}$t$\acute{e}$s d'une suite num$\acute{e}$rique li$\acute{e}$e $\grave{a}$ un probl$\acute{e}$me de vote pond$\acute{e}$r$\acute{e}$, Th$\grave{e}$se de docteur-ing$\acute{e}$nieur, Universit$\acute{e}$ Pierre et Marie Curie, 1983
[8] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Fizmatlit, M., 2001
[9] Nikolenko S., Kriptografiya i reshetki, , 2009 http://logic.pdmi.ras.ru/s̃ergey/teaching/cscryp09/05-lattices.pdf