Development of a~continuous asynchronous cellular automata method for simulating turbulent flows
Prikladnaâ diskretnaâ matematika, no. 4 (2012), pp. 73-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for simulating turbulent flows of the matter based on the continuous asynchronous cellular automata is presented, and a modification of it is proposed. The modification includes the implementation of a probabilistic mechanism in the cellular automaton movement along the components of the velocity vectors, and the modeling the substance transfer process by the directional state duplication of the neighbour cells. The results of numerical experiments are given for the dynamic of turbulent matter flow in a tube with obstacles.
Keywords: cellular automaton, computer simulation, the Navier–Stokes equation.
Mots-clés : turbulence
@article{PDM_2012_4_a5,
     author = {G. D. Tymchyk and V. V. Zhikharevich},
     title = {Development of a~continuous asynchronous cellular automata method  for simulating turbulent flows},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {73--81},
     publisher = {mathdoc},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2012_4_a5/}
}
TY  - JOUR
AU  - G. D. Tymchyk
AU  - V. V. Zhikharevich
TI  - Development of a~continuous asynchronous cellular automata method  for simulating turbulent flows
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2012
SP  - 73
EP  - 81
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2012_4_a5/
LA  - ru
ID  - PDM_2012_4_a5
ER  - 
%0 Journal Article
%A G. D. Tymchyk
%A V. V. Zhikharevich
%T Development of a~continuous asynchronous cellular automata method  for simulating turbulent flows
%J Prikladnaâ diskretnaâ matematika
%D 2012
%P 73-81
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2012_4_a5/
%G ru
%F PDM_2012_4_a5
G. D. Tymchyk; V. V. Zhikharevich. Development of a~continuous asynchronous cellular automata method  for simulating turbulent flows. Prikladnaâ diskretnaâ matematika, no. 4 (2012), pp. 73-81. http://geodesic.mathdoc.fr/item/PDM_2012_4_a5/

[1] Bandman O. L., “Kletochno-avtomatnye modeli prostranstvennoi dinamiki”, Sistemnaya informatika, 2005, no. 10, 57–113

[2] Zhikharevich V. V., Ostapov S. E., “Modelirovanie protsessov samoorganizatsii i evolyutsii sistem metodom nepreryvnykh asinkhronnykh kletochnykh avtomatov”, Kompyuting, 8:3 (2009), 61–71

[3] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, 2-e izd., Mir, M., 1981, 408 pp. | MR | Zbl

[4] Turbulentnost, http://ru.wikipedia.org/wiki/Turbulentnost

[5] Chislo Reinoldsa, http://ru.wikipedia.org/wiki/Chislo_Reinoldsa

[6] Suschestvovanie i gladkost reshenii uravnenii Nave–Stoksa, http://ru.wikipedia.org/wiki/Suschestvovanie_i_gladkost_reshenii_uravnenii_Nave_—_Stoksa