Quasigroups and rings in coding theory and cryptography
Prikladnaâ diskretnaâ matematika, no. 4 (2012), pp. 31-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

Cryptoschemes and codes over associative and nonassociative algebraic structures are studied. A cryptoscheme over graded ring, a cryptoscheme over Moufang loop, a key agreement protocol, and linearly optimal codes are constructed.
Mots-clés : nonassociative algebraic structure
Keywords: graded ring, quasigroup ring, Moufang loop, commutator quasigroup, cryptoschemes, linearly optimal code.
@article{PDM_2012_4_a2,
     author = {V. T. Markov and A. V. Mikhalev and A. V. Gribov and P. A. Zolotykh and S. S. Skazhenik},
     title = {Quasigroups and rings in coding theory and cryptography},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {31--52},
     publisher = {mathdoc},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2012_4_a2/}
}
TY  - JOUR
AU  - V. T. Markov
AU  - A. V. Mikhalev
AU  - A. V. Gribov
AU  - P. A. Zolotykh
AU  - S. S. Skazhenik
TI  - Quasigroups and rings in coding theory and cryptography
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2012
SP  - 31
EP  - 52
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2012_4_a2/
LA  - ru
ID  - PDM_2012_4_a2
ER  - 
%0 Journal Article
%A V. T. Markov
%A A. V. Mikhalev
%A A. V. Gribov
%A P. A. Zolotykh
%A S. S. Skazhenik
%T Quasigroups and rings in coding theory and cryptography
%J Prikladnaâ diskretnaâ matematika
%D 2012
%P 31-52
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2012_4_a2/
%G ru
%F PDM_2012_4_a2
V. T. Markov; A. V. Mikhalev; A. V. Gribov; P. A. Zolotykh; S. S. Skazhenik. Quasigroups and rings in coding theory and cryptography. Prikladnaâ diskretnaâ matematika, no. 4 (2012), pp. 31-52. http://geodesic.mathdoc.fr/item/PDM_2012_4_a2/

[1] Rososhek S. K., “Kriptosistemy gruppovykh kolets”, Vestnik Tomskogo gosuniversiteta. Prilozhenie, 2003, no. 6, 57–62

[2] Belousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, M., 1967, 223 pp. | MR | Zbl

[3] Pflugfelder H. O., Quasigroups and Loops: Introduction, Heldermann, Berlin, 1990 | MR

[4] Smith J. D. H., An Introduction to Quasigroups and their Representations, Chapman Hall/CRC, Boca Raton, 2007 | MR | Zbl

[5] Vojtechovsky P., “Generators for finite simple Moufang loops”, J. Group Theory, 6 (2003), 169–174 | MR | Zbl

[6] Paige L. J., “A class of simple Moufang loops”, Proc. Amer. Math. Soc., 7:3 (1956), 471–482 | DOI | MR | Zbl

[7] Vojtechovsky P., Finite simple Moufang loops, PhD thesis, Department of Mathematics, Iowa State University, Ames, 2001

[8] Conrad P., “Generalized semigroup rings”, J. Indian Math. Soc., 21 (1957), 73–95 | MR

[9] Gribov A. V., Zolotykh P. A., Mikhalëv A. V., “Postroenie algebraicheskoi kriptosistemy nad kvazigruppovym koltsom”, Matematicheskie voprosy kriptografii, 1:4 (2010), 23–32

[10] Kuzucuoglu F., Levchuk V. M., “The automorphism group of certain radical matrix rings”, J. Algebra, 243:2 (2001), 473–485 | DOI | MR | Zbl

[11] Magliveras S. S., Stinson D. R., Tran van Trung, “New approaches to designing public key cryptosystem using one-way functions and trap-doors in finite groups”, J. Cryptology, 15:4 (2008), 285–297 | DOI | MR

[12] MakVillyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979

[13] Heise W., Quattrocci P., Informations und Codierungstheorie, Springer, Berlin–Heidelberg, 1995 | MR | Zbl

[14] Gonsales S., Kouselo E., Markov V. T., Nechaev A. A., “Rekursivnye MDR-kody i rekursivno differentsiruemye kvazigruppy”, Diskretnaya matematika, 10:2 (1998), 3–29 | DOI | MR | Zbl

[15] Gonsales S., Kouselo E., Markov V. T., Nechaev A. A., “Gruppovye kody i ikh neassotsiativnye obobscheniya”, Diskretnaya matematika, 16:1 (2004), 146–156 | DOI | MR | Zbl

[16] Brouwer A. E., “Bounds on linear codes”, Handbook of Coding Theory, Elsevier, Amsterdam, 1998, 295–461 | MR | Zbl

[17] Grassl M., “Searching for linear codes with large minimum distance”, Discovering Mathematics with Magma, 19, Springer, Berlin–Heidelberg, 2006, 287–313 | DOI | MR | Zbl

[18] Couselo E., Gonzalez S., Markov V., et al., “Some constructions of linearly optimal group codes”, Linear Algebra and its Applications, 433 (2010), 356–364 | DOI | MR | Zbl

[19] Charpin P., “Les codes ve Reed–Solomon en tant qu'idéaux d'une algèbre modulaire”, C. R. Acad. Sci. Paris, 294:17 (1982), 597–600 (French, English summary) | MR | Zbl

[20] Landrock P., Manz O., “Classical codes as ideals in group algebras”, Designs, Codes and Cryptography, 2 (1992), 273–285 | DOI | MR | Zbl