About a Feistel block cipher generalization
Prikladnaâ diskretnaâ matematika, no. 3 (2012), pp. 34-40
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Generalized Feistel Networks based on shift registers are investigated. The involutivity criterion is proved for the encryption algorithms in this class. The mixing properties of concerned algorithms are researched using a graph-theoretical approach. The upper bounds for the diameter and for the exponent of the mixing graph of the appropriated round function are given.
Keywords: Feistel block cipher, involutivity, mixing graph (matrix) of a transformation, diameter of a graph, exponent of a graph.
@article{PDM_2012_3_a3,
     author = {A. M. Koreneva and V. M. Fomichev},
     title = {About a {Feistel} block cipher generalization},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {34--40},
     year = {2012},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2012_3_a3/}
}
TY  - JOUR
AU  - A. M. Koreneva
AU  - V. M. Fomichev
TI  - About a Feistel block cipher generalization
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2012
SP  - 34
EP  - 40
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/PDM_2012_3_a3/
LA  - ru
ID  - PDM_2012_3_a3
ER  - 
%0 Journal Article
%A A. M. Koreneva
%A V. M. Fomichev
%T About a Feistel block cipher generalization
%J Prikladnaâ diskretnaâ matematika
%D 2012
%P 34-40
%N 3
%U http://geodesic.mathdoc.fr/item/PDM_2012_3_a3/
%G ru
%F PDM_2012_3_a3
A. M. Koreneva; V. M. Fomichev. About a Feistel block cipher generalization. Prikladnaâ diskretnaâ matematika, no. 3 (2012), pp. 34-40. http://geodesic.mathdoc.fr/item/PDM_2012_3_a3/

[1] Fomichëv V. M., Metody diskretnoi matematiki v kriptologii, DIALOG-MIFI, M., 2010, 424 pp.

[2] Sachkov V. N., Tarakanov V. E., Kombinatorika neotritsatelnykh matrits, TVP, M., 2000, 448 pp. | MR | Zbl

[3] Fomichev V. M., “Otsenki eksponentov primitivnykh grafov”, Prikladnaya diskretnaya matematika, 2011, no. 2(12), 101–112