About a Feistel block cipher generalization
Prikladnaâ diskretnaâ matematika, no. 3 (2012), pp. 34-40
Generalized Feistel Networks based on shift registers are investigated. The involutivity criterion is proved for the encryption algorithms in this class. The mixing properties of concerned algorithms are researched using a graph-theoretical approach. The upper bounds for the diameter and for the exponent of the mixing graph of the appropriated round function are given.
Keywords:
Feistel block cipher, involutivity, mixing graph (matrix) of a transformation, diameter of a graph, exponent of a graph.
@article{PDM_2012_3_a3,
author = {A. M. Koreneva and V. M. Fomichev},
title = {About a {Feistel} block cipher generalization},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {34--40},
year = {2012},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2012_3_a3/}
}
A. M. Koreneva; V. M. Fomichev. About a Feistel block cipher generalization. Prikladnaâ diskretnaâ matematika, no. 3 (2012), pp. 34-40. http://geodesic.mathdoc.fr/item/PDM_2012_3_a3/
[1] Fomichëv V. M., Metody diskretnoi matematiki v kriptologii, DIALOG-MIFI, M., 2010, 424 pp.
[2] Sachkov V. N., Tarakanov V. E., Kombinatorika neotritsatelnykh matrits, TVP, M., 2000, 448 pp. | MR | Zbl
[3] Fomichev V. M., “Otsenki eksponentov primitivnykh grafov”, Prikladnaya diskretnaya matematika, 2011, no. 2(12), 101–112