On the coincidence of the class of bent-functions with the class of functions which are minimally close to linear functions
Prikladnaâ diskretnaâ matematika, no. 3 (2012), pp. 25-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

For functions from $(\mathbb Z/(p))^n$ to $(\mathbb Z/(p))^m$ where $p$ is a prime, the property of closeness to linear functions is investigated. It is proved that, for any function, this property is inherited by its homomorphic images. As a generalization of an analogous statement for Boolean functions it is shown that if $p=2$ or $3$ then the class of functions which are absolutely minimally close to linear ones coincides with the class of bent-functions.
Keywords: functions closeness, absolutely non-homomorphic functions, minimal functions, bent-functions.
@article{PDM_2012_3_a2,
     author = {V. I. Solodovnikov},
     title = {On the coincidence of the class of bent-functions with the class of functions which are minimally close to linear functions},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {25--33},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2012_3_a2/}
}
TY  - JOUR
AU  - V. I. Solodovnikov
TI  - On the coincidence of the class of bent-functions with the class of functions which are minimally close to linear functions
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2012
SP  - 25
EP  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2012_3_a2/
LA  - ru
ID  - PDM_2012_3_a2
ER  - 
%0 Journal Article
%A V. I. Solodovnikov
%T On the coincidence of the class of bent-functions with the class of functions which are minimally close to linear functions
%J Prikladnaâ diskretnaâ matematika
%D 2012
%P 25-33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2012_3_a2/
%G ru
%F PDM_2012_3_a2
V. I. Solodovnikov. On the coincidence of the class of bent-functions with the class of functions which are minimally close to linear functions. Prikladnaâ diskretnaâ matematika, no. 3 (2012), pp. 25-33. http://geodesic.mathdoc.fr/item/PDM_2012_3_a2/

[1] Solodovnikov V. I., “Bent-funktsii iz konechnoi abelevoi gruppy v konechnuyu abelevu gruppu”, Diskretnaya matematika, 14:1 (2002), 99–113 | MR | Zbl

[2] Kuzmin A. S., Nechaev A. A., Shishkin V. A., “Bent- i giperbent-funktsii nad konechnym polem”, Trudy po diskretnoi matematike, 10, 2007, 97–122

[3] Nyberg K., “Perfect nonlinear S-boxes”, LNCS, 547, 1991, 378–386 | MR | Zbl

[4] Rothaus O. S., “On “bent” functions”, J. Comb. Theory. Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[5] Ambrosimov A. S., “Svoistva bent-funktsii $q$-znachnoi logiki nad konechnymi polyami”, Diskretnaya matematika, 6:3 (1994), 50–60 | MR | Zbl

[6] Logachëv O. A., Salnikov A. A., Yaschenko V. V., “Bent-funktsii na konechnoi abelevoi gruppe”, Diskretnaya matematika, 9:4 (1997), 3–20 | MR | Zbl

[7] Kumar P. V., Scholts R. A., Welch L. R., “Generalized bent functions and their properties”, J. Comb. Theory. Ser. A, 40:1 (1985), 90–107 | DOI | MR | Zbl

[8] Tokareva N. N., Nelineinye bulevy funktsii: bent-funktsii i ikh obobscheniya, LAP LAMBERT Academic Publishing, Saarbrucken, Germany, 2011

[9] Golomb S. W., “On the classification of Boolean functions”, IRE Trans. Circuit Theory, 1:6 (1959), 10–27

[10] Kuzmin A. S., Nechaev A. A., Shishkin V. A., “Parametry (giper-) bent-funktsii nad polem iz $2^l$ elementov”, Trudy po diskretnoi matematike, 11, no. 1, 2008, 47–59