On the coincidence of the class of bent-functions with the class of functions which are minimally close to linear functions
Prikladnaâ diskretnaâ matematika, no. 3 (2012), pp. 25-33
Voir la notice de l'article provenant de la source Math-Net.Ru
For functions from $(\mathbb Z/(p))^n$ to $(\mathbb Z/(p))^m$ where $p$ is a prime, the property of closeness to linear functions is investigated. It is proved that, for any function, this property is inherited by its homomorphic images. As a generalization of an analogous statement for Boolean functions it is shown that if $p=2$ or $3$ then the class of functions which are absolutely minimally close to linear ones coincides with the class of bent-functions.
Keywords:
functions closeness, absolutely non-homomorphic functions, minimal functions, bent-functions.
@article{PDM_2012_3_a2,
author = {V. I. Solodovnikov},
title = {On the coincidence of the class of bent-functions with the class of functions which are minimally close to linear functions},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {25--33},
publisher = {mathdoc},
number = {3},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2012_3_a2/}
}
TY - JOUR AU - V. I. Solodovnikov TI - On the coincidence of the class of bent-functions with the class of functions which are minimally close to linear functions JO - Prikladnaâ diskretnaâ matematika PY - 2012 SP - 25 EP - 33 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2012_3_a2/ LA - ru ID - PDM_2012_3_a2 ER -
%0 Journal Article %A V. I. Solodovnikov %T On the coincidence of the class of bent-functions with the class of functions which are minimally close to linear functions %J Prikladnaâ diskretnaâ matematika %D 2012 %P 25-33 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDM_2012_3_a2/ %G ru %F PDM_2012_3_a2
V. I. Solodovnikov. On the coincidence of the class of bent-functions with the class of functions which are minimally close to linear functions. Prikladnaâ diskretnaâ matematika, no. 3 (2012), pp. 25-33. http://geodesic.mathdoc.fr/item/PDM_2012_3_a2/