On the coincidence of the class of bent-functions with the class of functions which are minimally close to linear functions
Prikladnaâ diskretnaâ matematika, no. 3 (2012), pp. 25-33

Voir la notice de l'article provenant de la source Math-Net.Ru

For functions from $(\mathbb Z/(p))^n$ to $(\mathbb Z/(p))^m$ where $p$ is a prime, the property of closeness to linear functions is investigated. It is proved that, for any function, this property is inherited by its homomorphic images. As a generalization of an analogous statement for Boolean functions it is shown that if $p=2$ or $3$ then the class of functions which are absolutely minimally close to linear ones coincides with the class of bent-functions.
Keywords: functions closeness, absolutely non-homomorphic functions, minimal functions, bent-functions.
@article{PDM_2012_3_a2,
     author = {V. I. Solodovnikov},
     title = {On the coincidence of the class of bent-functions with the class of functions which are minimally close to linear functions},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {25--33},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2012_3_a2/}
}
TY  - JOUR
AU  - V. I. Solodovnikov
TI  - On the coincidence of the class of bent-functions with the class of functions which are minimally close to linear functions
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2012
SP  - 25
EP  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2012_3_a2/
LA  - ru
ID  - PDM_2012_3_a2
ER  - 
%0 Journal Article
%A V. I. Solodovnikov
%T On the coincidence of the class of bent-functions with the class of functions which are minimally close to linear functions
%J Prikladnaâ diskretnaâ matematika
%D 2012
%P 25-33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2012_3_a2/
%G ru
%F PDM_2012_3_a2
V. I. Solodovnikov. On the coincidence of the class of bent-functions with the class of functions which are minimally close to linear functions. Prikladnaâ diskretnaâ matematika, no. 3 (2012), pp. 25-33. http://geodesic.mathdoc.fr/item/PDM_2012_3_a2/