Invariants of reaction-diffusion cellular automata models
Prikladnaâ diskretnaâ matematika, no. 3 (2012), pp. 108-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

A concept of cellular automata (CA) model invariant is introduced. The invariant is a dimensionless value characterizing the process under simulation which is independent from mathematical description of the process and may be expressed both in model terms and in their physical counterparts. Invariants are important in practical computer simulation as a basis for calculating scaling coefficients needed for transition from CA model values to habitual physical quantities and vice versa. Invariants of some typical CA models of reaction-diffusion processes are presented. Based on the invariant a general approach to solve CA-modelling scaling problem is proposed.
Keywords: cellular automaton, nonlinear spatial dynamics, scaling invariants.
Mots-clés : cellular-automata simulation, reaction-diffusion processes
@article{PDM_2012_3_a12,
     author = {O. L. Bandman},
     title = {Invariants of reaction-diffusion cellular automata models},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {108--120},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2012_3_a12/}
}
TY  - JOUR
AU  - O. L. Bandman
TI  - Invariants of reaction-diffusion cellular automata models
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2012
SP  - 108
EP  - 120
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2012_3_a12/
LA  - ru
ID  - PDM_2012_3_a12
ER  - 
%0 Journal Article
%A O. L. Bandman
%T Invariants of reaction-diffusion cellular automata models
%J Prikladnaâ diskretnaâ matematika
%D 2012
%P 108-120
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2012_3_a12/
%G ru
%F PDM_2012_3_a12
O. L. Bandman. Invariants of reaction-diffusion cellular automata models. Prikladnaâ diskretnaâ matematika, no. 3 (2012), pp. 108-120. http://geodesic.mathdoc.fr/item/PDM_2012_3_a12/

[1] Fon Neiman Dzh., Teoriya samovosproizvodyaschikhsya avtomatov, Mir, M., 1971, 240 pp.

[2] Vanag V. K., Dissipativnye struktury v reaktsionno-diffuzionnykh sistemakh. Eksperiment i teoriya, IKI, Izhevsk, 2008, 300 pp.

[3] Boccara N., Reaction-Diffusion complex systems, Springer, Berlin, 2004, 397 pp. | Zbl

[4] Wolfram S., “Statistical mechanics in cellular automata”, Rev. Mod. Phys., 55 (1983), 601–642 | DOI | MR

[5] Vanag V. K., “Issledovanie prostranstvenno-raspredelennykh dinamicheskikh sistem metodami veroyatnostnogo kletochnogo avtomata”, UFN, 169:5 (1999), 481–505 | DOI

[6] Bandman O., “Mapping physical phenomena onto CA-models”, AUTOMATA-Theory and Applications of Cellular Automata, Luniver Press, London, 2008, 381–397

[7] Bandman O. L., “Otobrazhenie fizicheskikh protsessov na ikh kletochno-avtomatnye modeli”, Vestnik Tomskogo gosuniversiteta. Ser. Matematika. Kibernetika. Informatika, 2008, no. 3, 345–356

[8] Kalgin K., “Comparative study of Parallel Algorithms for Asynchronous Cellular Automata Simulation on Different computer Architectures”, LNSC, 6350, 2010, 399–408 | Zbl

[9] Weimar J., “Cellular Automata for reaction-diffusion systems”, Parallel Computing, 23:11 (1997), 1699–1715 | DOI | MR

[10] Bandman O., “A Hybrid Approach to Reaction-Diffusion Simulation”, LNCS, 2127, 2001, 1–16 | Zbl

[11] Achasova S. M., Bandman O. L., Korrektnost parallelnykh protsessov, Nauka, Novosibirsk, 1998

[12] Jansen A. P. J., An Introduction to Monte Carlo Simulations of Surface Reactions, 2003, 51 pp., arXiv: cond-mat/0303028v1[stst-mech]

[13] Metropolis N., Ulam S., “The Monte Carlo Method”, Amer. Stati. Assoc., 44:247 (1949), 335–341 | DOI | MR | Zbl

[14] Bandman O., “Parallel Simulation of Asynchronous Cellular Automata Evolution”, LNCS, 4173, 2006, 41–47 | MR | Zbl

[15] Malinetskii G. G., Stepantsov M. E., “Modelirovanie diffuzionnykh protsessov s pomoschyu kletochnykh avtomatov s okrestnostyu Margolusa”, Zhurn. vychisl. matematiki i mat. fiziki, 38:6 (1998), 1017–1020 | MR | Zbl

[16] Toffolli T., Margolus N., Cellular Automata Machines: A New Environment for Modeling, MIT Press, USA, 1987, 260 pp.

[17] Kalgin K. V., Kletochno-avtomatnye modeli protsessa diffuzii, Chastnoe soobschenie

[18] Medvedev Yu. G., “Multiparticle Cellular Automata for Diffusion Simulation”, LNCS, 6083, 2011, 204–211

[19] Ziff R. M., Gulari E., Barshad Y., “Kinetic phase transition in an irreversible surface-reaction model”, Phys. Rev. Lett., 56:24 (1986), 2553–2556 | DOI

[20] Kolmogorov A. N., Petrovskii I. G., Piskunov I. S., “Issledovanie uravneniya diffuzii, soedinennoi s vozrastaniem kolichestva veschestva i ego primenenie k odnoi biologicheskoi probleme”, Byulleten MGU, sektsiya A, 1937, no. 6, 1–25 | Zbl

[21] Fisher R. A., The genetical theory of natural selection, Univ. Press, Oxford, 1930 | MR | Zbl

[22] Bandman O. L., “Metody kompozitsii kletochnykh avtomatov dlya modelirovaniya prostranstvennoi dinamiki”, Vestnik Tomskogo gosuniversiteta, 2004, no. 9(1), 183–193

[23] Bandman O., “Synchronous versus Asynchronous Cellular Automata for Simulating Nano-Kinetics”, Bul. Nov. Comp. Center, 21, NCC Publisher, Novosibirsk, 2004, 9–21

[24] Warren C., Somfai E., Sander L. M., “Velocity of front propagation in 1-dimensional autocatalytic reactions”, Braz. J. Phys., 30:1 (2000), 157–162 | DOI

[25] Brunet E., Derrida B., “Effect of Microscopic Noise on Front Propagation Velocity”, J. Stat. Phys., 103:1–2 (2001), 269–282 | DOI | MR | Zbl

[26] Ackland G. J., Tweedie E. S., “Microscopic model of diffusion limited aggregation and electrodeposition in the presence of leveling molecules”, Phys. Rev. E, 73:1 (2006), 011606 | DOI | MR