Invariants of reaction-diffusion cellular automata models
Prikladnaâ diskretnaâ matematika, no. 3 (2012), pp. 108-120
Voir la notice de l'article provenant de la source Math-Net.Ru
A concept of cellular automata (CA) model invariant is introduced. The invariant is a dimensionless value characterizing the process under simulation which is independent from mathematical description of the process and may be expressed both in model terms and in their physical counterparts. Invariants are important in practical computer simulation as a basis for calculating scaling coefficients needed for transition from CA model values to habitual physical quantities and vice versa. Invariants of some typical CA models of reaction-diffusion processes are presented. Based on the invariant a general approach to solve CA-modelling scaling problem is proposed.
Keywords:
cellular automaton, nonlinear spatial dynamics, scaling invariants.
Mots-clés : cellular-automata simulation, reaction-diffusion processes
Mots-clés : cellular-automata simulation, reaction-diffusion processes
@article{PDM_2012_3_a12,
author = {O. L. Bandman},
title = {Invariants of reaction-diffusion cellular automata models},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {108--120},
publisher = {mathdoc},
number = {3},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2012_3_a12/}
}
O. L. Bandman. Invariants of reaction-diffusion cellular automata models. Prikladnaâ diskretnaâ matematika, no. 3 (2012), pp. 108-120. http://geodesic.mathdoc.fr/item/PDM_2012_3_a12/