Linear complexity of generalized cyclotomic sequences with period~$2^mp^n$
Prikladnaâ diskretnaâ matematika, no. 3 (2012), pp. 5-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for analyzing the linear complexity of generalized cyclotomic sequences with period $2^mp^n$ is proposed. It allows to pick out sequences with the high linear complexity. The linear complexity of some sequences is computed on the base of classes of quadratic and biquadratic residues.
Keywords: generalized cyclotomic sequences, linear complexity.
@article{PDM_2012_3_a0,
     author = {V. A. Edemskiy and O. V. Antonova},
     title = {Linear complexity of generalized cyclotomic sequences with period~$2^mp^n$},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {5--12},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2012_3_a0/}
}
TY  - JOUR
AU  - V. A. Edemskiy
AU  - O. V. Antonova
TI  - Linear complexity of generalized cyclotomic sequences with period~$2^mp^n$
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2012
SP  - 5
EP  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2012_3_a0/
LA  - ru
ID  - PDM_2012_3_a0
ER  - 
%0 Journal Article
%A V. A. Edemskiy
%A O. V. Antonova
%T Linear complexity of generalized cyclotomic sequences with period~$2^mp^n$
%J Prikladnaâ diskretnaâ matematika
%D 2012
%P 5-12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2012_3_a0/
%G ru
%F PDM_2012_3_a0
V. A. Edemskiy; O. V. Antonova. Linear complexity of generalized cyclotomic sequences with period~$2^mp^n$. Prikladnaâ diskretnaâ matematika, no. 3 (2012), pp. 5-12. http://geodesic.mathdoc.fr/item/PDM_2012_3_a0/

[1] Lidl R., Niderraiter G., Konechnye polya, Mir, M., 1988, 820 pp. | Zbl

[2] Cusick T. W., Ding C., Renvall A., Stream Ciphers and Number Theory, North-Holland Mathematical Library, 55, Elsevier, Amsterdam, 1998 | MR

[3] Ding C., Helleseth T., Shan W., “On the Linear Complexity of Legendre Sequences”, IEEE Trans. Info. Theory, 44 (1998), 1276–1278 | DOI | MR

[4] Ding C., Helleseth T., Martinsen H., “New families of binary sequences with optimal three-level autocorrelation”, IEEE Trans. Info. Theory, 47 (2001), 428–433 | DOI | MR | Zbl

[5] Zhang J., Zhao C.-A., Ma X., “Linear complexity of generalized cyclotomic binary sequences of length $2p^m$”, Appl. Algebra Eng. Commun. Comput., 21:2 (2010), 93–108 | DOI | MR | Zbl

[6] Zhang J., Zhao C.-A., Ma X., “On the Linear Complexity of Generalized Cyclotomic Binary Sequences with Length $2p^2$”, IEICE Trans. Fundament. Electron. Commun. Comput. Sci., E93.A:1 (2010), 302–308 | DOI

[7] Aierlend K., Rouzen M., Klassicheskoe vvedenie v sovremennuyu teoriyu chisel, Mir, M., 1987, 416 pp. | MR

[8] Edemskiy V. A., “About computation of the linear complexity of generalized cyclotomic sequences with period $p^{n+1}$”, Designs, Codes and Cryptography, 61:3 (2011), 251–260 | DOI | MR | Zbl

[9] Edemskii V. A., “O lineinoi slozhnosti dvoichnykh posledovatelnostei na osnove klassov bikvadratichnykh i shesterichnykh vychetov”, Diskretnaya matematika, 22:1 (2010), 74–82 | DOI | MR | Zbl

[10] Edemskii V. A, Gantmakher V. E., Sintez dvoichnykh i troichnykh posledovatelnostei s zadannymi ogranicheniyami na ikh kharakteristiki, NovGU, Velikii Novgorod, 2009, 189 pp.

[11] Zhang Y., Lei J. G., Zhang S. P., “A new family of almost differences sets and some necessary conditions”, IEEE Trans. Info. Theory, 52 (2006), 2052–2061 | DOI | MR | Zbl