Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2012_2_a4, author = {V. V. Bykova}, title = {FPT-algorithms on graphs of limited treewidth}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {65--78}, publisher = {mathdoc}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2012_2_a4/} }
V. V. Bykova. FPT-algorithms on graphs of limited treewidth. Prikladnaâ diskretnaâ matematika, no. 2 (2012), pp. 65-78. http://geodesic.mathdoc.fr/item/PDM_2012_2_a4/
[1] Downey R., Fellows M., Parameterized complexity, Springer Verlag, New York, 1999 | MR | Zbl
[2] Bykova V. V., “FPT-algoritmy i ikh klassifikatsiya na osnove elastichnosti”, Prikladnaya diskretnaya matematika, 2011, no. 2(12), 40–48
[3] Bodlaender H. L., “Treewidth: Algorithmic techniques and results”, LNCS, 1295, 1997, 19–36 | MR | Zbl
[4] Yu. I. Zhuravlev (red.), Kompyuter i zadachi vybora, Nauka, M., 1989 | MR
[5] Bykova V. V., “Vychislitelnye aspekty drevovidnoi shiriny grafa”, Prikladnaya diskretnaya matematika, 2011, no. 3(13), 65–79
[6] Meier D., Teoriya relyatsionnykh baz dannykh, Mir, M., 1987
[7] Courcelle B., “The monadic second-order logic of graphs. III. Tree decompositions, minors and complexity issues”, RAIRO Inform. Theor. Appl., 26:3 (1992), 257–286 | MR | Zbl
[8] Bodlaender H. L., Kloks T., “Efficient and constructive algorithms for the pathwidth and treewidth of graphs”, J. Algorithms, 21 (1996), 358–402 | DOI | MR | Zbl
[9] Bykova V. V., “Matematicheskie metody analiza rekursivnykh algoritmov”, Zhurnal SFU. Matematika i fizika, 1:3 (2008), 236–246
[10] Aspvall B., Proskurowski A., Telle J. A., “Memory requirements for table computations in partial $k$-tree algorithms”, Algorithmica, 27:3 (2000), 382–394 | DOI | MR | Zbl
[11] Bodlaender H. L., Fomin F. V., “Tree decompositions with small cost”, Discr. Appl. Math., 145:2 (2005), 143–154 | DOI | MR | Zbl
[12] Kloks T., Treewidth. Computations and Approximations, LNCS, 842, Springer Verlag, 1994 | MR | Zbl