FPT-algorithms on graphs of limited treewidth
Prikladnaâ diskretnaâ matematika, no. 2 (2012), pp. 65-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for designing FPT-algorithms by means of dynamic programming based on the tree decomposition is investigated. Some problems limiting the application of this method in practice are pointed. The problem of memory is solved by using a binary tree decomposition of the separator, which reduces the theoretical and the actual size of the dynamic programming tables. The technique of tables in the language of relational algebra is described.
Keywords: graph algorithms, tree decomposition, dynamic programming.
@article{PDM_2012_2_a4,
     author = {V. V. Bykova},
     title = {FPT-algorithms on graphs of limited treewidth},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {65--78},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2012_2_a4/}
}
TY  - JOUR
AU  - V. V. Bykova
TI  - FPT-algorithms on graphs of limited treewidth
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2012
SP  - 65
EP  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2012_2_a4/
LA  - ru
ID  - PDM_2012_2_a4
ER  - 
%0 Journal Article
%A V. V. Bykova
%T FPT-algorithms on graphs of limited treewidth
%J Prikladnaâ diskretnaâ matematika
%D 2012
%P 65-78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2012_2_a4/
%G ru
%F PDM_2012_2_a4
V. V. Bykova. FPT-algorithms on graphs of limited treewidth. Prikladnaâ diskretnaâ matematika, no. 2 (2012), pp. 65-78. http://geodesic.mathdoc.fr/item/PDM_2012_2_a4/

[1] Downey R., Fellows M., Parameterized complexity, Springer Verlag, New York, 1999 | MR | Zbl

[2] Bykova V. V., “FPT-algoritmy i ikh klassifikatsiya na osnove elastichnosti”, Prikladnaya diskretnaya matematika, 2011, no. 2(12), 40–48

[3] Bodlaender H. L., “Treewidth: Algorithmic techniques and results”, LNCS, 1295, 1997, 19–36 | MR | Zbl

[4] Yu. I. Zhuravlev (red.), Kompyuter i zadachi vybora, Nauka, M., 1989 | MR

[5] Bykova V. V., “Vychislitelnye aspekty drevovidnoi shiriny grafa”, Prikladnaya diskretnaya matematika, 2011, no. 3(13), 65–79

[6] Meier D., Teoriya relyatsionnykh baz dannykh, Mir, M., 1987

[7] Courcelle B., “The monadic second-order logic of graphs. III. Tree decompositions, minors and complexity issues”, RAIRO Inform. Theor. Appl., 26:3 (1992), 257–286 | MR | Zbl

[8] Bodlaender H. L., Kloks T., “Efficient and constructive algorithms for the pathwidth and treewidth of graphs”, J. Algorithms, 21 (1996), 358–402 | DOI | MR | Zbl

[9] Bykova V. V., “Matematicheskie metody analiza rekursivnykh algoritmov”, Zhurnal SFU. Matematika i fizika, 1:3 (2008), 236–246

[10] Aspvall B., Proskurowski A., Telle J. A., “Memory requirements for table computations in partial $k$-tree algorithms”, Algorithmica, 27:3 (2000), 382–394 | DOI | MR | Zbl

[11] Bodlaender H. L., Fomin F. V., “Tree decompositions with small cost”, Discr. Appl. Math., 145:2 (2005), 143–154 | DOI | MR | Zbl

[12] Kloks T., Treewidth. Computations and Approximations, LNCS, 842, Springer Verlag, 1994 | MR | Zbl