Properties of coefficients in some superpositions of generating functions
Prikladnaâ diskretnaâ matematika, no. 1 (2012), pp. 55-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

The generating function $ \ln((1-F(x))^{-1})$ where $F(x)$ is an ordinary generating function with the integer coefficients is considered. Some properties ot its coefficients allowing the construction of probabilistic primality tests are obtained. The connection of them with the existing primality tests is shown. Some new properties of Lucas numbers and binomial coefficients $2n-1\choose n-1$ are obtained too.
Keywords: generating functions, superposition of generating functions, composition of a natural number, primality test.
@article{PDM_2012_1_a3,
     author = {D. V. Kruchinin},
     title = {Properties of coefficients in some superpositions of generating functions},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {55--59},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2012_1_a3/}
}
TY  - JOUR
AU  - D. V. Kruchinin
TI  - Properties of coefficients in some superpositions of generating functions
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2012
SP  - 55
EP  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2012_1_a3/
LA  - ru
ID  - PDM_2012_1_a3
ER  - 
%0 Journal Article
%A D. V. Kruchinin
%T Properties of coefficients in some superpositions of generating functions
%J Prikladnaâ diskretnaâ matematika
%D 2012
%P 55-59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2012_1_a3/
%G ru
%F PDM_2012_1_a3
D. V. Kruchinin. Properties of coefficients in some superpositions of generating functions. Prikladnaâ diskretnaâ matematika, no. 1 (2012), pp. 55-59. http://geodesic.mathdoc.fr/item/PDM_2012_1_a3/

[1] Kruchinin V. V., Kombinatorika kompozitsii i eë prilozheniya, V-Spektr, Tomsk, 2010, 156 pp.

[2] J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, , 2011 http://www.oeis.org

[3] Agrawal M., Kayal N., Saxena N., “PRIMES is in P”, Ann. Math., 160:2 (2004), 781–793 | DOI | MR | Zbl