Properties of coefficients in some superpositions of generating functions
Prikladnaâ diskretnaâ matematika, no. 1 (2012), pp. 55-59
Voir la notice de l'article provenant de la source Math-Net.Ru
The generating function $ \ln((1-F(x))^{-1})$ where $F(x)$ is an ordinary generating function with the integer coefficients is considered. Some properties ot its coefficients allowing the construction of probabilistic primality tests are obtained. The connection of them with the existing primality tests is shown. Some new properties of Lucas numbers and binomial coefficients $2n-1\choose n-1$ are obtained too.
Keywords:
generating functions, superposition of generating functions, composition of a natural number, primality test.
@article{PDM_2012_1_a3,
author = {D. V. Kruchinin},
title = {Properties of coefficients in some superpositions of generating functions},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {55--59},
publisher = {mathdoc},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2012_1_a3/}
}
D. V. Kruchinin. Properties of coefficients in some superpositions of generating functions. Prikladnaâ diskretnaâ matematika, no. 1 (2012), pp. 55-59. http://geodesic.mathdoc.fr/item/PDM_2012_1_a3/