Regular estimates for the complexity of polynomial multiplication and truncated Fourier transform
Prikladnaâ diskretnaâ matematika, no. 4 (2011), pp. 72-88

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, some polynomial multiplication circuits being efficient either in complexity and depth or in complexity and memory size are proposed. Consequently, for instance, the multiplication of polynomials of the sum degree $n-1$, where $n=2^{n_1}+\dots+2^{n_s}$, $n_1>\dots>n_s$, over a ring with invertible 2 can be implemented via $M(n_1)+\dots+M(n_s)+\mathrm O(n)$ arithmetic operations over the ring with the depth $\max_i\{D(n_i)\}+\mathrm O(\log n)$, where $M(k)$ and $D(k)$ are respectively the complexity and the depth of the modulo $x^{2^k}+1$ multiplication circuit. As another example, the truncated DFT of order $n$ (i.e. the DFT of order $2^{\lceil\log_2n\rceil}$ reduced to the vectors of dimension $n$) can be implemented by a circuit of complexity $1,5n\log_2n+\mathrm O(n)$ and memory size $n+1$.
Keywords: arithmetic circuits, complexity, depth, memory size
Mots-clés : multiplication, Discrete Fourier Transform.
@article{PDM_2011_4_a8,
     author = {I. S. Sergeev},
     title = {Regular estimates for the complexity of polynomial multiplication and truncated {Fourier} transform},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {72--88},
     publisher = {mathdoc},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2011_4_a8/}
}
TY  - JOUR
AU  - I. S. Sergeev
TI  - Regular estimates for the complexity of polynomial multiplication and truncated Fourier transform
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2011
SP  - 72
EP  - 88
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2011_4_a8/
LA  - ru
ID  - PDM_2011_4_a8
ER  - 
%0 Journal Article
%A I. S. Sergeev
%T Regular estimates for the complexity of polynomial multiplication and truncated Fourier transform
%J Prikladnaâ diskretnaâ matematika
%D 2011
%P 72-88
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2011_4_a8/
%G ru
%F PDM_2011_4_a8
I. S. Sergeev. Regular estimates for the complexity of polynomial multiplication and truncated Fourier transform. Prikladnaâ diskretnaâ matematika, no. 4 (2011), pp. 72-88. http://geodesic.mathdoc.fr/item/PDM_2011_4_a8/