Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2011_4_a5, author = {A. N. Voropaev}, title = {Multiplicities of sums in the explicit formulae for counting fixed length cycles in undirected graphs}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {42--55}, publisher = {mathdoc}, number = {4}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2011_4_a5/} }
TY - JOUR AU - A. N. Voropaev TI - Multiplicities of sums in the explicit formulae for counting fixed length cycles in undirected graphs JO - Prikladnaâ diskretnaâ matematika PY - 2011 SP - 42 EP - 55 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2011_4_a5/ LA - ru ID - PDM_2011_4_a5 ER -
A. N. Voropaev. Multiplicities of sums in the explicit formulae for counting fixed length cycles in undirected graphs. Prikladnaâ diskretnaâ matematika, no. 4 (2011), pp. 42-55. http://geodesic.mathdoc.fr/item/PDM_2011_4_a5/
[1] Harary F., Kommel H. J., “Matrix measures for transitivity and balance”, J. Math. Sociol., 6:2 (1979), 199–210 | DOI | MR | Zbl
[2] Newman M. E. J., “The structure and function of complex networks”, SIAM Rev., 45:2 (2003), 167–256 | DOI | MR | Zbl
[3] Cardillo A., Scellato S., Latora V., Porta S., “Structural properties of planar graphs of urban street patterns”, Phys. Rev. E, 73:6 (2006), 066107, 8 pp. | DOI
[4] Halford T. R., Chugg K. M., “An algorithm for counting short cycles in bipartite graphs”, IEEE Trans. Inform. Theory, 52:1 (2006), 287–292 | DOI | MR
[5] Valiant L. G., “The complexity of enumeration and reliability problems”, SIAM J. Comput., 8:3 (1979), 410–421 | DOI | MR | Zbl
[6] Liśkiewicz M., Ogihara M., Toda S., “The complexity of counting self-avoiding walks in subgraphs of two-dimensional grids and hypercubes”, Theor. Comput. Sci., 304:1–3 (2003), 129–156 | DOI | MR | Zbl
[7] Flum J., Grohe M., “The parameterized complexity of counting problems”, SIAM J. Comput., 33:4 (2004), 892–922 | DOI | MR | Zbl
[8] Voropaev A. N., “Vyvod yavnykh formul dlya podschëta tsiklov fiksirovannoi dliny v neorientirovannykh grafakh”, Informatsionnye protsessy, 11:1 (2011), 90–113
[9] Harary F., Manvel B., “On the number of cycles in a graph”, Matematický časopis, 21:1 (1971), 55–63 | MR | Zbl
[10] Chang Y. C., Fu H. L., “The number of 6-cycles in a graph”, The Bulletin of the Institute of Combinatorics and Its Applications, 39 (2003), 27–30 | MR | Zbl
[11] Perepechko S. N., Voropaev A. N., “The number of fixed length cycles in an undirected graph. Explicit formulae in case of small lengths”, Int. Conf. “Mathematical Modeling and Computational Physics” (MMCP' 2009), JINR, Dubna, 2009, 148–149
[12] Alon N., Yuster R., Zwick U., “Finding and counting given length cycles”, Algorithmica, 17:3 (1997), 209–223 | DOI | MR | Zbl
[13] Voropaev A. N., “Uchët obkhvata pri podschëte korotkikh tsiklov v dvudolnykh grafakh”, Informatsionnye protsessy, 11:2 (2011), 225–252 | MR
[14] Kharari F., Teoriya grafov, Mir, M., 1973, 301 pp. | MR
[15] Ck-graphs: FlowProblem, 2011 http://flowproblem.ru/cycles/explicit-formulae/ck-graphs
[16] The nauty page, 2011 http://cs.anu.edu.au/~bdm/nauty
[17] Papadimitriou C. H., Yannakakis M., “The clique problem for planar graphs”, Inform. Processing Lett., 13:4–5 (1981), 131–133 | DOI | MR