On minimal vertex 1-extensions of special type graph union
Prikladnaâ diskretnaâ matematika, no. 4 (2011), pp. 34-41
Voir la notice de l'article provenant de la source Math-Net.Ru
In 2001, it was conjectured that the minimal vertex 1-extension of a graph $G+G^*$, where $G^*$ is a minimal vertex 1-extension of graph $G$, is unique up to isomorphism and has the form $G^*+G^*$. We construct two counterexamples to this conjecture showing that, in general, it is wrong. Also, we show that the statement is true for many graphs.
Keywords:
graph, minimal vertex extension, exact vertex extension, fault tolerance.
@article{PDM_2011_4_a4,
author = {M. B. Abrosimov},
title = {On minimal vertex 1-extensions of special type graph union},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {34--41},
publisher = {mathdoc},
number = {4},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2011_4_a4/}
}
M. B. Abrosimov. On minimal vertex 1-extensions of special type graph union. Prikladnaâ diskretnaâ matematika, no. 4 (2011), pp. 34-41. http://geodesic.mathdoc.fr/item/PDM_2011_4_a4/