Computational aspects of treewidth for graph
Prikladnaâ diskretnaâ matematika, no. 3 (2011), pp. 65-79

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper gives a brief overview of recent results on the graph treewidth problem. We investigate some of the lower and upper bounds for treewidth, and present algorithmic methods to improve these bounds.
Keywords: graph algorithms, treewidth, partial $k$-tree.
@article{PDM_2011_3_a4,
     author = {V. V. Bykova},
     title = {Computational aspects of treewidth for graph},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {65--79},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2011_3_a4/}
}
TY  - JOUR
AU  - V. V. Bykova
TI  - Computational aspects of treewidth for graph
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2011
SP  - 65
EP  - 79
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2011_3_a4/
LA  - ru
ID  - PDM_2011_3_a4
ER  - 
%0 Journal Article
%A V. V. Bykova
%T Computational aspects of treewidth for graph
%J Prikladnaâ diskretnaâ matematika
%D 2011
%P 65-79
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2011_3_a4/
%G ru
%F PDM_2011_3_a4
V. V. Bykova. Computational aspects of treewidth for graph. Prikladnaâ diskretnaâ matematika, no. 3 (2011), pp. 65-79. http://geodesic.mathdoc.fr/item/PDM_2011_3_a4/