Method for constructing elliptic curves using complex multiplication and its optimizations
Prikladnaâ diskretnaâ matematika, no. 3 (2011), pp. 17-54

Voir la notice de l'article provenant de la source Math-Net.Ru

Elliptic curves over finite fields with predefined conditions on the order are practically constructed using the theory of complex multiplication. A stage with the longest calculations in this method reconstructs some polynomial with integer coefficients. We prove some theoretical results and give a detailed account of the method itself and show how one can use a divisor of the mentioned polynomial with coefficients in an extension of the rational number field.
Keywords: elliptic curves, finite fields, simultaneous approximations.
Mots-clés : complex multiplication
@article{PDM_2011_3_a2,
     author = {E. A. Grechnikov},
     title = {Method for constructing elliptic curves using complex multiplication and its optimizations},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {17--54},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2011_3_a2/}
}
TY  - JOUR
AU  - E. A. Grechnikov
TI  - Method for constructing elliptic curves using complex multiplication and its optimizations
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2011
SP  - 17
EP  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2011_3_a2/
LA  - ru
ID  - PDM_2011_3_a2
ER  - 
%0 Journal Article
%A E. A. Grechnikov
%T Method for constructing elliptic curves using complex multiplication and its optimizations
%J Prikladnaâ diskretnaâ matematika
%D 2011
%P 17-54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2011_3_a2/
%G ru
%F PDM_2011_3_a2
E. A. Grechnikov. Method for constructing elliptic curves using complex multiplication and its optimizations. Prikladnaâ diskretnaâ matematika, no. 3 (2011), pp. 17-54. http://geodesic.mathdoc.fr/item/PDM_2011_3_a2/