Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2011_1_a6, author = {I. V. Otpuschennikov and A. A. Semenov}, title = {Technology for translating combinatorial problems into {Boolean} equations}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {96--115}, publisher = {mathdoc}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2011_1_a6/} }
TY - JOUR AU - I. V. Otpuschennikov AU - A. A. Semenov TI - Technology for translating combinatorial problems into Boolean equations JO - Prikladnaâ diskretnaâ matematika PY - 2011 SP - 96 EP - 115 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2011_1_a6/ LA - ru ID - PDM_2011_1_a6 ER -
I. V. Otpuschennikov; A. A. Semenov. Technology for translating combinatorial problems into Boolean equations. Prikladnaâ diskretnaâ matematika, no. 1 (2011), pp. 96-115. http://geodesic.mathdoc.fr/item/PDM_2011_1_a6/
[1] Rudeanu S., Boolean functions and equations, North-Holland Publishing Company, Amsterdam–London, 1974, 442 pp. | MR | Zbl
[2] Prestwich S., “CNF encodings”, Handbook of Satisfiability, eds. A. Biere, M. Heule, H. van Maaren, T. Walsh, IOS Press, 2009, 75–97
[3] Cook S. A., “The complexity of theorem-proving procedures”, Proc. 3rd Ann. ACM Symp. on Theory of Computing (STOC 71), ACM, 1971, 151–159
[4] Garey M. R., Johnson S., Computers and intractability: A guide to the theory of NP-completeness, W. H. Freeman, 1979, 340 pp. | MR | Zbl
[5] Semënov A. A., “Translyatsiya algoritmov vychisleniya diskretnykh funktsii v vyrazheniya propozitsionalnoi logiki”, Prikladnye algoritmy v diskretnom analize, Diskretnyi analiz i informatika, 2, 2008, 70–98
[6] Shepherdson J. C., Sturgis H. E., “Computability of recursive functions”, J. Assoc. Comp. Machinery, 10 (1963), 217–255 | MR | Zbl
[7] Katlend N., Vychislimost. Vvedenie v teoriyu rekursivnykh funktsii, Mir, M., 1983, 256 pp. | MR
[8] Tseitin G. S., “O slozhnosti vyvoda v ischislenii vyskazyvanii”, Zapiski nauchnykh seminarov LOMI AN SSSR, 8, 1968, 234–259 | MR | Zbl
[9] Semënov A. A., “O preobrazovaniyakh Tseitina v logicheskikh uravneniyakh”, Prikladnaya diskretnaya matematika, 2009, no. 4, 28–50
[10] Akho A., Seti R., Ulman Dzh., Kompilyatory. Printsipy, tekhnologii, instrumenty, Vilyams, M.–SPb.–Kiev, 2001, 768 pp.
[11] Menezes A., Oorschot P., Vanstone S., Handbook of Applied Cryptography, CRC Press, 1996, 657 pp.
[12] Cook S. A., Mitchel G., “Finding hard instances of the satisfiability problem: A survey”, DIMACS Ser. Discr. Mathem. Theoret. Comp. Scie., 35 (1997), 1–17 | MR | Zbl
[13] Massacci F., Marraro L., “Logical Cryptanalysis as a SAT Problem”, J. Autom. Reas., 24:1–2 (2000), 165–203 | DOI | MR | Zbl
[14] Semënov A. A., Zaikin O. S., Bespalov D. V., Ushakov A. A., “SAT-podkhod v kriptoanalize nekotorykh sistem potochnogo shifrovaniya”, Vychislitelnye tekhnologii, 13:6 (2008), 134–150 | Zbl
[15] Posypkin M. A., Zaikin O. S., Bespalov D. V., Semënov A. A., “Reshenie zadach kriptoanaliza potochnykh shifrov v raspredelennykh vychislitelnykh sredakh”, Trudy ISA RAN, 46, 2009, 119–137
[16] Rueppel R., “Correlation immunity and the summation generator”, LNCS, 218, 1986, 260–272
[17] Schneier B., Applied Cryptography, Protocols, Algorithms, and Source Code in C, Second Edition, John Wiley and Sons, 1996, 758 pp.
[18] Massacci F., Marraro L., Logical Cryptoanalysis as a SAT Problem: the Encoding of the Data Encryption Standard, Preprint, Dipartimento di Imformatica e Sistemistica, Universita di Roma “La Sapienza”, 1999 | MR
[19] embedded.eecs.berkeley.edu/pubs/downloads/espresso
[20] www.cril.univ-artois.fr/PB10/
[21] Een N., Sorensson N., “Translating Pseudo-Boolean Constraints into SAT”, J. Satisfiab., Bool. Model. Comp., 2 (2006), 1–25
[22] MIPLIB – Mixed Integer Problem Library, miplib.zib.de
[24] N. A. Kolchanov, S. S. Goncharov, V. A. Likhoshvai, V. A. Ivanisenko (red.), Sistemnaya kompyuternaya biologiya, Izd-vo SO RAN, Novosibirsk, 2008, 767 pp.
[25] Ganai M., Gupta A., SAT-based scalable formal verification solutions, Springer, 2007, 326 pp. | MR | Zbl