Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2011_1_a3, author = {A. V. Khalyavin}, title = {Upper bounds on nonlinearity of correlation immune {Boolean} functions}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {34--69}, publisher = {mathdoc}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2011_1_a3/} }
A. V. Khalyavin. Upper bounds on nonlinearity of correlation immune Boolean functions. Prikladnaâ diskretnaâ matematika, no. 1 (2011), pp. 34-69. http://geodesic.mathdoc.fr/item/PDM_2011_1_a3/
[1] Sarkar P., Maitra S., “Nonlinearity bounds and constructions of resilient boolean functions”, LNCS, 1880, 2000, 515–532 | MR | Zbl
[2] Tarannikov Yu., “On resilient Boolean functions with maximal possible nonlinearity”, LNCS, 1977, 2000, 19–30 | MR | Zbl
[3] Zheng Y., Zhang X. M., “Improved upper bound on the nonlinearity of high order correlation immune functions”, LNCS, 2012, 2001, 264–274 | MR
[4] Tarannikov Yu. V., “O korrelyatsionno-immunnykh i ustoichivykh bulevykh funktsiyakh”, Matematicheskie voprosy kibernetiki, 11, Fizmatlit, M., 2002, 91–148 | MR
[5] Khalyavin A. V., “Postroenie 4 korrelyatsionno-immunnykh bulevykh funktsii ot 9 peremennykh s nelineinostyu 240”, Materialy X Mezhdunar. seminara “Diskretnaya matematika i eë prilozheniya” (Moskva, MGU, 1–6 fevralya 2010 g.), Izd-vo mekhaniko-matematicheskogo fakulteta MGU, M., 2010, 534
[6] Botev A. A., “O sootnosheniyakh mezhdu korrelyatsionnoi immunnostyu, nelineinostyu i vesom dlya neuravnoveshennykh bulevykh funktsii”, Matematicheskie voprosy kibernetiki, 11, Fizmatlit, M., 2002, 149–162 | MR
[7] Guo-Zhen X., Massey J. A., “Spectral characterization of correlation-immune combining functions”, IEEE Trans. Information Theory, 34:3 (1988), 569–571 | DOI | MR | Zbl