On the number of perfectly balanced Boolean functions with barrier of length~$3$
Prikladnaâ diskretnaâ matematika, no. 1 (2011), pp. 26-33

Voir la notice de l'article provenant de la source Math-Net.Ru

Some lower and upper bounds are obtained for the logarithm of the number of Boolean functions with the right barrier of length $3$ essentially depended on the last variable. Also, the following new lower bound for the logarithm of the number of perfectly balanced Boolean functions of $n$ variables with nonlinear dependence on the first and on the last variable is obtained: $2^{n-2}\left(1+\dfrac{\log_25}4-\mathrm O(1/\sqrt n)\right)$.
Keywords: perfectly balanced functions, barriers of Boolean functions, cryptography.
@article{PDM_2011_1_a2,
     author = {S. V. Smyshlyaev},
     title = {On the number of perfectly balanced {Boolean} functions with barrier of length~$3$},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {26--33},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2011_1_a2/}
}
TY  - JOUR
AU  - S. V. Smyshlyaev
TI  - On the number of perfectly balanced Boolean functions with barrier of length~$3$
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2011
SP  - 26
EP  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2011_1_a2/
LA  - ru
ID  - PDM_2011_1_a2
ER  - 
%0 Journal Article
%A S. V. Smyshlyaev
%T On the number of perfectly balanced Boolean functions with barrier of length~$3$
%J Prikladnaâ diskretnaâ matematika
%D 2011
%P 26-33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2011_1_a2/
%G ru
%F PDM_2011_1_a2
S. V. Smyshlyaev. On the number of perfectly balanced Boolean functions with barrier of length~$3$. Prikladnaâ diskretnaâ matematika, no. 1 (2011), pp. 26-33. http://geodesic.mathdoc.fr/item/PDM_2011_1_a2/