Description of the class of permutations, represented as a~product of two permutations with fixed number of mobile points
Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 16-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of the class of permutations represented as the product of two permutations with $q$ mobile points, $4\le q\le N/2$, is completely described.
@article{PDM_2011_13_a6,
     author = {A. B. Pichkur},
     title = {Description of the class of permutations, represented as a~product of two permutations with fixed number of mobile points},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {16--17},
     publisher = {mathdoc},
     number = {13},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2011_13_a6/}
}
TY  - JOUR
AU  - A. B. Pichkur
TI  - Description of the class of permutations, represented as a~product of two permutations with fixed number of mobile points
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2011
SP  - 16
EP  - 17
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2011_13_a6/
LA  - ru
ID  - PDM_2011_13_a6
ER  - 
%0 Journal Article
%A A. B. Pichkur
%T Description of the class of permutations, represented as a~product of two permutations with fixed number of mobile points
%J Prikladnaâ diskretnaâ matematika
%D 2011
%P 16-17
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2011_13_a6/
%G ru
%F PDM_2011_13_a6
A. B. Pichkur. Description of the class of permutations, represented as a~product of two permutations with fixed number of mobile points. Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 16-17. http://geodesic.mathdoc.fr/item/PDM_2011_13_a6/

[1] Bertram E., “Even permutations as a product of two conjugate cycles”, J. Combin. Theory (A), 12:3 (1972), 368–380 | DOI | MR | Zbl

[2] Bertram E., Wei V. K., “Decomposing a permutation into two large cycles; an enumeration”, SIAM J. Algebraic Discrete methods, 1:4 (1980), 450–461 | DOI | MR | Zbl

[3] Moran G., “Reflection classes whose cubes cover the alternating group”, J. Combin. Theory (A), 21:1 (1976), 1–19 | DOI | Zbl

[4] Moran G., “Permutations as products of $k$ conjugate involutions”, J. Combin. Theory (A), 19:2 (1975), 240–242 | DOI | Zbl

[5] Z. Arad, M. Herzog (eds.), Product of conjugacy classes in groups, Lecture Notes in Mathematics, 1112, Springer Verlag, Berlin, 1985, 244 pp. | Zbl

[6] Tuzhilin M. E., “O porozhdenii znakoperemennoi gruppy poluregulyarnymi involyutsiyami”, Obozrenie prikladnoi i promyshlennoi matematiki, 11:4 (2004), 938–939