@article{PDM_2011_13_a6,
author = {A. B. Pichkur},
title = {Description of the class of permutations, represented as a~product of two permutations with fixed number of mobile points},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {16--17},
year = {2011},
number = {13},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2011_13_a6/}
}
TY - JOUR AU - A. B. Pichkur TI - Description of the class of permutations, represented as a product of two permutations with fixed number of mobile points JO - Prikladnaâ diskretnaâ matematika PY - 2011 SP - 16 EP - 17 IS - 13 UR - http://geodesic.mathdoc.fr/item/PDM_2011_13_a6/ LA - ru ID - PDM_2011_13_a6 ER -
A. B. Pichkur. Description of the class of permutations, represented as a product of two permutations with fixed number of mobile points. Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 16-17. http://geodesic.mathdoc.fr/item/PDM_2011_13_a6/
[1] Bertram E., “Even permutations as a product of two conjugate cycles”, J. Combin. Theory (A), 12:3 (1972), 368–380 | DOI | MR | Zbl
[2] Bertram E., Wei V. K., “Decomposing a permutation into two large cycles; an enumeration”, SIAM J. Algebraic Discrete methods, 1:4 (1980), 450–461 | DOI | MR | Zbl
[3] Moran G., “Reflection classes whose cubes cover the alternating group”, J. Combin. Theory (A), 21:1 (1976), 1–19 | DOI | Zbl
[4] Moran G., “Permutations as products of $k$ conjugate involutions”, J. Combin. Theory (A), 19:2 (1975), 240–242 | DOI | Zbl
[5] Z. Arad, M. Herzog (eds.), Product of conjugacy classes in groups, Lecture Notes in Mathematics, 1112, Springer Verlag, Berlin, 1985, 244 pp. | Zbl
[6] Tuzhilin M. E., “O porozhdenii znakoperemennoi gruppy poluregulyarnymi involyutsiyami”, Obozrenie prikladnoi i promyshlennoi matematiki, 11:4 (2004), 938–939