C-model of a~predator--prey growth in the ecological niche
Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 74-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

The population of automata is a model of collective behavior of automata. Modeling of population dynamics is implemented by Causal Petri Net. Net places represent the states of automata. A net marking specifies the number of automata that are in corresponding states. Transitions represent events that result from the joint actions of the elements of a population. For each transition of the net, a value is specified defining the probability (rate) of the transition response, so a system of differential equations can be built. These equations describe the dynamics of the average number of automata in places while the logical conditions specified by Petri net are implemented. The numerical solution of the system is obtained using computer simulation.
@article{PDM_2011_13_a36,
     author = {Yu. V. Berezovsky and V. A. Vorob'ev},
     title = {C-model of a~predator--prey growth in the ecological niche},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {74--76},
     publisher = {mathdoc},
     number = {13},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2011_13_a36/}
}
TY  - JOUR
AU  - Yu. V. Berezovsky
AU  - V. A. Vorob'ev
TI  - C-model of a~predator--prey growth in the ecological niche
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2011
SP  - 74
EP  - 76
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2011_13_a36/
LA  - ru
ID  - PDM_2011_13_a36
ER  - 
%0 Journal Article
%A Yu. V. Berezovsky
%A V. A. Vorob'ev
%T C-model of a~predator--prey growth in the ecological niche
%J Prikladnaâ diskretnaâ matematika
%D 2011
%P 74-76
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2011_13_a36/
%G ru
%F PDM_2011_13_a36
Yu. V. Berezovsky; V. A. Vorob'ev. C-model of a~predator--prey growth in the ecological niche. Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 74-76. http://geodesic.mathdoc.fr/item/PDM_2011_13_a36/

[1] Vorobev V. A., Kochnev A. I., “Populyatsionnoe modelirovanie kollektivnogo povedeniya avtomatov”, Vestnik Tomskogo gosuniversiteta, 2007, Prilozhenie No 23, 270–275

[2] Achasova S. M., Bandman O. L., Korrektnost parallelnykh vychislitelnykh protsessov, Nauka, Novosibirsk, 1990, 314 pp. | Zbl