FPT-algorithms and their classification on the base of elasticity
Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 58-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a brief overview of the results and problems of parameterized algorithmics as the new direction of computational complexity theory. For a parameterized algorithm, we offer a new indicator of computational complexity which can be used to measure the growth rate of its complexity function depending on many variables. This indicator is a partial elasticity of the complexity function. We offer a two-dimensional classification of parameterized algorithms with the complexity function having a multiplicative form of presentation.
@article{PDM_2011_13_a28,
     author = {V. V. Bykova},
     title = {FPT-algorithms and their classification on the base of elasticity},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {58--60},
     publisher = {mathdoc},
     number = {13},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2011_13_a28/}
}
TY  - JOUR
AU  - V. V. Bykova
TI  - FPT-algorithms and their classification on the base of elasticity
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2011
SP  - 58
EP  - 60
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2011_13_a28/
LA  - ru
ID  - PDM_2011_13_a28
ER  - 
%0 Journal Article
%A V. V. Bykova
%T FPT-algorithms and their classification on the base of elasticity
%J Prikladnaâ diskretnaâ matematika
%D 2011
%P 58-60
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2011_13_a28/
%G ru
%F PDM_2011_13_a28
V. V. Bykova. FPT-algorithms and their classification on the base of elasticity. Prikladnaâ diskretnaâ matematika, no. 13 (2011), pp. 58-60. http://geodesic.mathdoc.fr/item/PDM_2011_13_a28/

[1] Downey R., Fellows M., Parameterized complexity, Springer Verlag, New York, 1999 | Zbl

[2] Flum J., Grohe M., Parameterized complexity theory, Springer Verlag, Berlin–Heidelberg, 2006

[3] Cesati M., Compendium of parameterized problems, 2006 http://bravo.ce.uniroma2.it/home/cesati/research/compendium

[4] Niedermeier R., Invitation to fixed-parameter algorithms, Oxford Lecture series in mathematics and its applications, University Press, Oxford, 2006 | Zbl

[5] Bykova V. V., “Metod raspoznavaniya klassov algoritmov na osnove asimptotiki elastichnosti funktsii slozhnosti”, Zhurn. SFU. Matematika i fizika, 2:1 (2009), 48–62

[6] Bykova V. V., “Elastichnost algoritmov”, Prikladnaya diskretnaya matematika, 2010, no. 2(8), 87–95

[7] Bykova V. V., “Complexity and elasticity of the computation”, Proc. of the 3-rd IASTED International Multi-Conference on Automation, Control, and Information Technology (ACIT-CDA 2010), ACTA Press, Anaheim–Calgary–Zurich, 2010, 334–340

[8] Bykova V. V., “FPT-algoritmy i ikh klassifikatsiya na osnove elastichnosti”, Prikladnaya diskretnaya matematika, 2011, no. 2, 40–48