On mapping graphs of parallel programs onto graphs of distributed computer systems by recurrent neural networks
Prikladnaâ diskretnaâ matematika, no. 4 (2010), pp. 33-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

A problem of mapping graphs of parallel programs onto graphs of distributed computer systems by recurrent neural networks is formulated. The network parameters providing the absence of incorrect solutions are experimentally determined. By introduction of a penalty coefficient into the Lyapunov function for the program graph edges non-coincided with the edges of the computer system, the optimal solutions are computed for mapping the “line” program graph onto a two-dimensional torus. To increase the optimal solution probability a method of the mapping decomposition is proposed. The method essence is a reduction of the solution matrix to a block-diagonal shape. For exclusion of incorrect solutions in mapping the line onto three-dimensional torus, a recurrent Wang network is used because it is converged more rapidly than the Hopfield network.
Keywords: mapping, graphs of parallel programs, distributed computer systems, Hopfield network, recurrent Wang network.
@article{PDM_2010_4_a3,
     author = {M. S. Tarkov},
     title = {On mapping graphs of parallel programs onto graphs of distributed computer systems by recurrent neural networks},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {33--40},
     publisher = {mathdoc},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2010_4_a3/}
}
TY  - JOUR
AU  - M. S. Tarkov
TI  - On mapping graphs of parallel programs onto graphs of distributed computer systems by recurrent neural networks
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2010
SP  - 33
EP  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2010_4_a3/
LA  - ru
ID  - PDM_2010_4_a3
ER  - 
%0 Journal Article
%A M. S. Tarkov
%T On mapping graphs of parallel programs onto graphs of distributed computer systems by recurrent neural networks
%J Prikladnaâ diskretnaâ matematika
%D 2010
%P 33-40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2010_4_a3/
%G ru
%F PDM_2010_4_a3
M. S. Tarkov. On mapping graphs of parallel programs onto graphs of distributed computer systems by recurrent neural networks. Prikladnaâ diskretnaâ matematika, no. 4 (2010), pp. 33-40. http://geodesic.mathdoc.fr/item/PDM_2010_4_a3/

[1] Korneev V. V., Arkhitektura vychislitelnykh sistem s programmiruemoi strukturoi, Nauka, Novosibirsk, 1985, 166 pp. | MR | Zbl

[2] Tarkov M. S., “Vlozhenie struktur parallelnykh programm v struktury zhivuchikh raspredelennykh vychislitelnykh sistem”, Avtometriya, 39:3 (2003), 84–96

[3] Cray T3E, http://www.cray.com/products/systems/crayt3e/1200e.html

[4] Yu H., Chung I.-H., Moreira J., “Topology Mapping for Blue Gene/L Supercomputer”, Proc. of the ACM/IEEE SC2006 Conf. on High Performance Networking and Computing (November 11–17, 2006, Tampa, FL, USA), ACM Press, 2006, 52–64

[5] Abramov S. M., Zadneprovskii V. F., Shmelev A. B., Moskovskii A. A., “SuperEVM ryada 4 semeistva “SKIF”: Shturm vershiny superkompyuternykh tekhnologii”, Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo, 2009, no. 5, 200–210 | MR

[6] Melamed I. I., “Neironnye seti i kombinatornaya optimizatsiya”, Avtomatika i telemekhanika, 1994, no. 11, 3–40 | MR | Zbl

[7] Kate A. S., “Neural Networks for Combinatorial Optimization: A Review of More Than a Decade of Research”, INFORMS J. Computing, 11:1 (1999), 15–34 | DOI | MR | Zbl

[8] Tarkov M. S., Lapukhov S. A., “Mapping a parallel program structure onto distributed computer system structure by the Hopfield neural network with fuzzy scheduling parameters”, Bulletin of the Novosibirsk Computing Center, Comp. Science, 19, 2003, 83–88

[9] Feng G., Douligeris C., “The Convergence and Parameter Relationship for Discrete-Time Continuous-State Hopfield Networks”, Proc. of Intern. Joint Conference on Neural Networks, 2001, 376–381

[10] Tarkov M. S., “Postroenie gamiltonovykh tsiklov rekurrentnoi neironnoi setyu v toroidalnykh grafakh s defektami reber”, Trudy XII Vseros. nauch.-tekhnich. konf. “NEIROINFORMATIKA-2010”, Ch. 2, M., 2010, 26–34

[11] Wang J., “Analysis and Design of a Recurrent Neural Network for Linear Programming”, IEEE Trans. On Circuits and Systems-I: Fundamental Theory and Applications, 40:9 (1993), 613–618 | DOI | Zbl

[12] Dijkstra E. W., “Self-stabilizing systems in spite of distributed control”, Commun. ACM, 17:11 (1974), 643–644 | DOI | Zbl