@article{PDM_2010_4_a0,
author = {R. M. Ganopolsky},
title = {The number of disordered covers of a~finite set by subsets having fixed cardinalities},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {5--17},
year = {2010},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2010_4_a0/}
}
R. M. Ganopolsky. The number of disordered covers of a finite set by subsets having fixed cardinalities. Prikladnaâ diskretnaâ matematika, no. 4 (2010), pp. 5-17. http://geodesic.mathdoc.fr/item/PDM_2010_4_a0/
[1] Comtet L., Advanced Combinatorics. The Art of Finite and Infinate Expansions, D. Reidel Publishing Company, Dordrecht, Holland, 1974 | MR | Zbl
[2] Macula A. J., “Covers of a finite set”, Mathematics Magazine, 67:2 (1994), 141–144 | DOI | MR | Zbl
[3] Knut D., Grekhem F., Potashnik O., Konkretnaya matematika. Osnovanie informatiki, Mir, M., 2006
[4] Endryus G., Teoriya razbienii, Nauka, M., 1982 | MR
[5] Stanley R. P., Enumerative Combinatorics, v. I, Cambridge University Press, 2002
[6] On-Line Encyclopedia of Integer Sequences – entsiklopedii tselochislennykh posledovatelnostei http://oeis.org/classic/A006129
[7] Kholl M., Kombinatorika, Mir, M., 1970 | MR
[8] Riordan D., Vvedenie v kombinatornyi analiz, IL, M., 1963
[9] Burger A. P., van Vuuren J. H., “Balanced minimum covers of a finite set”, Discrete Mathematics, 307:22 (2007), 2853–2860 | DOI | MR | Zbl
[10] Aigner M., Kombinatornaya teoriya, Mir, M., 1982 | MR