The number of disordered covers of a~finite set by subsets having fixed cardinalities
Prikladnaâ diskretnaâ matematika, no. 4 (2010), pp. 5-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article describes a new type of combinatorial numbers which calculate amount of the covers of a finite set by subsets having fixed cardinalities – parameters of numbers. A series of relations and identities are proved for them. Some sums of these numbers are computed. Special cases of new combinatorial numbers with parameters satisfying certain relations are investigated. Several other applications of these numbers in discrete mathematics are shown.
Keywords: cover, finite set, combinatoric numbers.
@article{PDM_2010_4_a0,
     author = {R. M. Ganopolsky},
     title = {The number of disordered covers of a~finite set by subsets having fixed cardinalities},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {5--17},
     publisher = {mathdoc},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2010_4_a0/}
}
TY  - JOUR
AU  - R. M. Ganopolsky
TI  - The number of disordered covers of a~finite set by subsets having fixed cardinalities
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2010
SP  - 5
EP  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2010_4_a0/
LA  - ru
ID  - PDM_2010_4_a0
ER  - 
%0 Journal Article
%A R. M. Ganopolsky
%T The number of disordered covers of a~finite set by subsets having fixed cardinalities
%J Prikladnaâ diskretnaâ matematika
%D 2010
%P 5-17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2010_4_a0/
%G ru
%F PDM_2010_4_a0
R. M. Ganopolsky. The number of disordered covers of a~finite set by subsets having fixed cardinalities. Prikladnaâ diskretnaâ matematika, no. 4 (2010), pp. 5-17. http://geodesic.mathdoc.fr/item/PDM_2010_4_a0/

[1] Comtet L., Advanced Combinatorics. The Art of Finite and Infinate Expansions, D. Reidel Publishing Company, Dordrecht, Holland, 1974 | MR | Zbl

[2] Macula A. J., “Covers of a finite set”, Mathematics Magazine, 67:2 (1994), 141–144 | DOI | MR | Zbl

[3] Knut D., Grekhem F., Potashnik O., Konkretnaya matematika. Osnovanie informatiki, Mir, M., 2006

[4] Endryus G., Teoriya razbienii, Nauka, M., 1982 | MR

[5] Stanley R. P., Enumerative Combinatorics, v. I, Cambridge University Press, 2002

[6] On-Line Encyclopedia of Integer Sequences – entsiklopedii tselochislennykh posledovatelnostei http://oeis.org/classic/A006129

[7] Kholl M., Kombinatorika, Mir, M., 1970 | MR

[8] Riordan D., Vvedenie v kombinatornyi analiz, IL, M., 1963

[9] Burger A. P., van Vuuren J. H., “Balanced minimum covers of a finite set”, Discrete Mathematics, 307:22 (2007), 2853–2860 | DOI | MR | Zbl

[10] Aigner M., Kombinatornaya teoriya, Mir, M., 1982 | MR