Solving inequalities over finite state machines in the reactive systems design
Prikladnaâ diskretnaâ matematika, no. 3 (2010), pp. 100-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of solving inequalities over finite state machines (FSMs) is considered. This problem arises in compositional approach to the design of reactive systems. The problem is formulated and solved at the level of FSMs specifications in the logical language $L$. We show how to compute the maximal solution to the inequality with respect to the operation of synchronous composition of FSMs.
Keywords: reactive system, language $L$ specification, $\Sigma$-automaton, inequality over $\Sigma$-automata
Mots-clés : synchronous composition of $\Sigma$-automata, maximal solution.
@article{PDM_2010_3_a9,
     author = {A. N. Chebotarev},
     title = {Solving inequalities over finite state machines in the reactive systems design},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {100--110},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2010_3_a9/}
}
TY  - JOUR
AU  - A. N. Chebotarev
TI  - Solving inequalities over finite state machines in the reactive systems design
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2010
SP  - 100
EP  - 110
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2010_3_a9/
LA  - ru
ID  - PDM_2010_3_a9
ER  - 
%0 Journal Article
%A A. N. Chebotarev
%T Solving inequalities over finite state machines in the reactive systems design
%J Prikladnaâ diskretnaâ matematika
%D 2010
%P 100-110
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2010_3_a9/
%G ru
%F PDM_2010_3_a9
A. N. Chebotarev. Solving inequalities over finite state machines in the reactive systems design. Prikladnaâ diskretnaâ matematika, no. 3 (2010), pp. 100-110. http://geodesic.mathdoc.fr/item/PDM_2010_3_a9/

[1] Yevtushenko N., Villa T., Brayton R., Petrenko A., et. al., “Solution of synchronous language equations for logic synthesis”, Vestnik Tomskogo gosuniversiteta, 2002, no. 1, 132–138

[2] Buffalov S., El-Fakih K., Yevtushenko N., Bochmann G., “Progressive solutions to a parallel automata equation”, LNCS, 2767, 2003, 367–383

[3] Yevtushenko N., Zharikova S., Vetrova M., “Multi component digital circuit optimization by solving FSM equations”, Euromicro Symposium on Digital System Design, IEEE Computer society, 2003, 62–68

[4] Harel D., Pnueli A., “On the development of reactive systems”, Logic and Models of Concurrent Systems, NATO ASI Series F, 13, Springer, Berlin, 1985, 477–498 | MR

[5] Chebotarev A. N., “Ob odnom podkhode k funktsionalnoi spetsifikatsii avtomatnykh sistem. I”, Kibernetika i sistemnyi analiz, 1993, no. 3, 31–42 | MR | Zbl

[6] Brauer V., Vvedenie v teoriyu konechnykh avtomatov, Radio i svyaz, M., 1987, 392 pp. | MR

[7] Chebotarev A. N., Kurivchak O. I., “Approksimatsiya mnozhestv sverkhslov formulami yazyka $L$”, Kibernetika i sistemnyi analiz, 2007, no. 6, 18–26 | MR | Zbl

[8] Kapitonova Yu. V., Chebotarev A. N., “Induktivnyi sintez avtomata po spetsifikatsii v logicheskom yazyke $L$”, Kibernetika i sistemnyi analiz, 2000, no. 6, 3–13 | Zbl

[9] Chebotarev A. N., “Vzaimodeistvie avtomatov”, Kibernetika i sistemnyi analiz, 1991, no. 6, 17–29 | MR | Zbl