Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2010_2_a10, author = {I. R. Akishev and M. E. Dvorkin}, title = {On constructing minimal deterministic finite automaton recognizing a~prefix-code of a~given cardinality}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {104--116}, publisher = {mathdoc}, number = {2}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2010_2_a10/} }
TY - JOUR AU - I. R. Akishev AU - M. E. Dvorkin TI - On constructing minimal deterministic finite automaton recognizing a~prefix-code of a~given cardinality JO - Prikladnaâ diskretnaâ matematika PY - 2010 SP - 104 EP - 116 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2010_2_a10/ LA - ru ID - PDM_2010_2_a10 ER -
%0 Journal Article %A I. R. Akishev %A M. E. Dvorkin %T On constructing minimal deterministic finite automaton recognizing a~prefix-code of a~given cardinality %J Prikladnaâ diskretnaâ matematika %D 2010 %P 104-116 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDM_2010_2_a10/ %G ru %F PDM_2010_2_a10
I. R. Akishev; M. E. Dvorkin. On constructing minimal deterministic finite automaton recognizing a~prefix-code of a~given cardinality. Prikladnaâ diskretnaâ matematika, no. 2 (2010), pp. 104-116. http://geodesic.mathdoc.fr/item/PDM_2010_2_a10/
[1] Unicode specification, http://unicode.org/
[2] Elias P., “Universal codeword sets and representations of the integers”, IEEE Trans. Inform. Theory, 21 (1975), 194–203 | DOI | MR | Zbl
[3] Golin M. J., Na H., “Optimal prefix-free codes that end in a specified pattern and similar problems: The uniform probability case (extended abstract)”, Data Compression Conference, 2001, 143–152
[4] Han Y.-S., Salomaa K., Wood D., “State complexity of prefix-free regular languages”, Proc. of the 8th Int. Workshop on Descriptional Complexity of Formal Systems, 2006, 165–176
[5] Khopkroft D. E., Motvani R., Ulman D. D., Vvedenie v teoriyu avtomatov, yazykov i vychislenii, Vilyams, M., 2002, 528 pp.
[6] Kormen T., Leizerson Ch., Rivest R., Algoritmy: postroenie i analiz, MTsNMO, BINOM, M., 2004, 960 pp.
[7] Knut D. E., Iskusstvo programmirovaniya, v. 2, Poluchislennye algoritmy, Vilyams, M., 2004, 832 pp.
[8] Bleichenbacher D., Efficiency and security of cryptosystems based on number theory, Zürich, 1996 | Zbl
[9] Cruz-Cortes N., Rodriguez-Henriquez F., Juarez-Morales R., Coello C. A., “Finding optimal addition chains using a genetic algorithm approach”, LNCS, 3801, 2005, 208–215
[10] Nedjah N., de Macedo M. L., “Finding minimal addition chains using ant colony”, IDEAL, LNCS, 3177, eds. R. Y. Zheng, R. M. Everson, Y. Hujun, 2004, 642–647
[11] Schonhage A., “A lower bound for the length of addition chains”, Theoretical Computer Science, 1:1 (1975), 1–12 | DOI | MR
[12] Flammenkamp A., Shortest addition chains, http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
[13] Downey P., Leong B., Sethi R., “Computing sequences with addition chains”, SIAM J. Computing, 10:3 (1981), 638–646 | DOI | MR | Zbl