Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2010_2_a0, author = {A. N. Alekseychuk and R. V. Proskurovskiy}, title = {Necessary and sufficient conditions of linear structure triviality for monomial mapping on the field of $2^{2^t}$ elements}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {5--9}, publisher = {mathdoc}, number = {2}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2010_2_a0/} }
TY - JOUR AU - A. N. Alekseychuk AU - R. V. Proskurovskiy TI - Necessary and sufficient conditions of linear structure triviality for monomial mapping on the field of $2^{2^t}$ elements JO - Prikladnaâ diskretnaâ matematika PY - 2010 SP - 5 EP - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2010_2_a0/ LA - ru ID - PDM_2010_2_a0 ER -
%0 Journal Article %A A. N. Alekseychuk %A R. V. Proskurovskiy %T Necessary and sufficient conditions of linear structure triviality for monomial mapping on the field of $2^{2^t}$ elements %J Prikladnaâ diskretnaâ matematika %D 2010 %P 5-9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDM_2010_2_a0/ %G ru %F PDM_2010_2_a0
A. N. Alekseychuk; R. V. Proskurovskiy. Necessary and sufficient conditions of linear structure triviality for monomial mapping on the field of $2^{2^t}$ elements. Prikladnaâ diskretnaâ matematika, no. 2 (2010), pp. 5-9. http://geodesic.mathdoc.fr/item/PDM_2010_2_a0/
[1] Logachev O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, M., 2004, 470 pp. | MR
[2] Evertse J. H., “Linear structures in blockciphers”, Advances in Cryptology – EUROCRYPT' 87, Springer Verlag, 1988, 249–266 | MR
[3] Lai X., “Additive and linear structures of cryptographic functions”, Fast Software Encryption – FSE' 94, Springer Verlag, 1995, 75–86
[4] Yaschenko V. V., “O kriterii rasprostraneniya dlya bulevykh funktsii i o bent-funktsiyakh”, Problemy peredachi informatsii, 33:1 (1997), 75–86 | MR | Zbl
[5] Dawson E., Wu Ch. K., “On the linear structures of symmetric functions”, Australian J. of Combinatorics, 16 (1997), 239–243 | Zbl
[6] Sachkov V. N., “Translyatory i translyatsii diskretnykh funktsii”, Trudy po diskretnoi matematike, 9, Gelios ARV, M., 2006, 253–268
[7] Pudovkina M. A., “Lineinye struktury grupp podstanovok nad konechnym modulem”, Prikladnaya diskretnaya matematika, 2008, no. 1, 25–28
[8] Alekseichuk A. N., “Dostatochnye usloviya stoikosti randomizirovannykh blochnykh sistem shifrovaniya otnositelno metoda kriptoanaliza na osnove kommutativnykh diagramm”, Reєstratsiya, zberigannya i obrobka danikh, 9:2 (2007), 61–68
[9] Alekseichuk A. N., “Kriterii primitivnosti gruppy podstanovok, porozhdennoi raundovymi preobrazovaniyami Rijndael-podobnogo blochnogo shifra”, Reєstratsiya, zberigannya i obrobka danikh, 6:2 (2004), 11–18
[10] Alekseichuk A. N., Skrynnik E. V., “Klassy otobrazhenii s trivialnoi lineinoi strukturoi nad konechnym polem”, Reєstratsiya, zberigannya i obrobka danikh, 10:3 (2008), 80–88
[11] Daemen J., Rijmen D., AES proposal: Rijndael, http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
[12] Aoki A., Ichikawa T., Kanda M., et al., “Camellia: a 128-bit block cipher suitable for multiple platforms – Design and Analysis”, Selected Areas in Cryptography, Springer Verlag, 2001, 39–56 | MR | Zbl
[13] Lidl R., Niderraiter G., Konechnye polya, v. 1, 2, Mir, M., 1988, 818 pp. | Zbl
[14] Berlekemp E., Algebraicheskaya teoriya kodirovaniya, Mir, M., 1971, 477 pp. | MR