Necessary and sufficient conditions of linear structure triviality for monomial mapping on the field of $2^{2^t}$ elements
Prikladnaâ diskretnaâ matematika, no. 2 (2010), pp. 5-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

The necessary and sufficient conditions are obtained in terms of binary structure of natural number $d$, under which all non-zero linear combinations of coordinate functions of mapping $x\mapsto x^d$, $x\in\mathbf{GF}(2^{2^t})$, don't have linear translators.
Keywords: linear structure of discrete mappings, finite field, monomial mapping.
@article{PDM_2010_2_a0,
     author = {A. N. Alekseychuk and R. V. Proskurovskiy},
     title = {Necessary and sufficient conditions of linear structure triviality for monomial mapping on the field of $2^{2^t}$ elements},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {5--9},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2010_2_a0/}
}
TY  - JOUR
AU  - A. N. Alekseychuk
AU  - R. V. Proskurovskiy
TI  - Necessary and sufficient conditions of linear structure triviality for monomial mapping on the field of $2^{2^t}$ elements
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2010
SP  - 5
EP  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2010_2_a0/
LA  - ru
ID  - PDM_2010_2_a0
ER  - 
%0 Journal Article
%A A. N. Alekseychuk
%A R. V. Proskurovskiy
%T Necessary and sufficient conditions of linear structure triviality for monomial mapping on the field of $2^{2^t}$ elements
%J Prikladnaâ diskretnaâ matematika
%D 2010
%P 5-9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2010_2_a0/
%G ru
%F PDM_2010_2_a0
A. N. Alekseychuk; R. V. Proskurovskiy. Necessary and sufficient conditions of linear structure triviality for monomial mapping on the field of $2^{2^t}$ elements. Prikladnaâ diskretnaâ matematika, no. 2 (2010), pp. 5-9. http://geodesic.mathdoc.fr/item/PDM_2010_2_a0/

[1] Logachev O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, M., 2004, 470 pp. | MR

[2] Evertse J. H., “Linear structures in blockciphers”, Advances in Cryptology – EUROCRYPT' 87, Springer Verlag, 1988, 249–266 | MR

[3] Lai X., “Additive and linear structures of cryptographic functions”, Fast Software Encryption – FSE' 94, Springer Verlag, 1995, 75–86

[4] Yaschenko V. V., “O kriterii rasprostraneniya dlya bulevykh funktsii i o bent-funktsiyakh”, Problemy peredachi informatsii, 33:1 (1997), 75–86 | MR | Zbl

[5] Dawson E., Wu Ch. K., “On the linear structures of symmetric functions”, Australian J. of Combinatorics, 16 (1997), 239–243 | Zbl

[6] Sachkov V. N., “Translyatory i translyatsii diskretnykh funktsii”, Trudy po diskretnoi matematike, 9, Gelios ARV, M., 2006, 253–268

[7] Pudovkina M. A., “Lineinye struktury grupp podstanovok nad konechnym modulem”, Prikladnaya diskretnaya matematika, 2008, no. 1, 25–28

[8] Alekseichuk A. N., “Dostatochnye usloviya stoikosti randomizirovannykh blochnykh sistem shifrovaniya otnositelno metoda kriptoanaliza na osnove kommutativnykh diagramm”, Reєstratsiya, zberigannya i obrobka danikh, 9:2 (2007), 61–68

[9] Alekseichuk A. N., “Kriterii primitivnosti gruppy podstanovok, porozhdennoi raundovymi preobrazovaniyami Rijndael-podobnogo blochnogo shifra”, Reєstratsiya, zberigannya i obrobka danikh, 6:2 (2004), 11–18

[10] Alekseichuk A. N., Skrynnik E. V., “Klassy otobrazhenii s trivialnoi lineinoi strukturoi nad konechnym polem”, Reєstratsiya, zberigannya i obrobka danikh, 10:3 (2008), 80–88

[11] Daemen J., Rijmen D., AES proposal: Rijndael, http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf

[12] Aoki A., Ichikawa T., Kanda M., et al., “Camellia: a 128-bit block cipher suitable for multiple platforms – Design and Analysis”, Selected Areas in Cryptography, Springer Verlag, 2001, 39–56 | MR | Zbl

[13] Lidl R., Niderraiter G., Konechnye polya, v. 1, 2, Mir, M., 1988, 818 pp. | Zbl

[14] Berlekemp E., Algebraicheskaya teoriya kodirovaniya, Mir, M., 1971, 477 pp. | MR