Minimal edge extensions of some precomplete graphs
Prikladnaâ diskretnaâ matematika, no. 1 (2010), pp. 105-117

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the minimal edge $k$-extensions of precomplete graphs – graphs in which there is a vertex adjacent to all other vertices. The lemma about the marginal value of $k$ when a precomplete graph can have a minimal edge $k$-extension is proved. The full description of all the minimal edge $k$-extensions of precomplete graphs being joins of a complete graph and an empty graph, a chain or a cycle is given.
Keywords: precomplete graph, minimal edge extension, fault tolerance.
@article{PDM_2010_1_a7,
     author = {M. B. Abrosimov},
     title = {Minimal edge extensions of some precomplete graphs},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {105--117},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2010_1_a7/}
}
TY  - JOUR
AU  - M. B. Abrosimov
TI  - Minimal edge extensions of some precomplete graphs
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2010
SP  - 105
EP  - 117
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2010_1_a7/
LA  - ru
ID  - PDM_2010_1_a7
ER  - 
%0 Journal Article
%A M. B. Abrosimov
%T Minimal edge extensions of some precomplete graphs
%J Prikladnaâ diskretnaâ matematika
%D 2010
%P 105-117
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2010_1_a7/
%G ru
%F PDM_2010_1_a7
M. B. Abrosimov. Minimal edge extensions of some precomplete graphs. Prikladnaâ diskretnaâ matematika, no. 1 (2010), pp. 105-117. http://geodesic.mathdoc.fr/item/PDM_2010_1_a7/