State estimation for stochastic object on the base of modeling trend in time series
Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 103-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new model for state recognition in dynamic object provided in the form of non-stationary time series is discussed. Algorithms for construction of generalized etalons of dynamic object state and of modeling segment of time series on the base of generalized etalons and difference scheme are suggested. Availability of the model is shown on an applied problem.
@article{PDM_2010_12_a53,
     author = {S. I. Kolesnikova and A. A. Belous},
     title = {State estimation for stochastic object on the base of modeling trend in time series},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {103--105},
     publisher = {mathdoc},
     number = {12},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2010_12_a53/}
}
TY  - JOUR
AU  - S. I. Kolesnikova
AU  - A. A. Belous
TI  - State estimation for stochastic object on the base of modeling trend in time series
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2010
SP  - 103
EP  - 105
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2010_12_a53/
LA  - ru
ID  - PDM_2010_12_a53
ER  - 
%0 Journal Article
%A S. I. Kolesnikova
%A A. A. Belous
%T State estimation for stochastic object on the base of modeling trend in time series
%J Prikladnaâ diskretnaâ matematika
%D 2010
%P 103-105
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2010_12_a53/
%G ru
%F PDM_2010_12_a53
S. I. Kolesnikova; A. A. Belous. State estimation for stochastic object on the base of modeling trend in time series. Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 103-105. http://geodesic.mathdoc.fr/item/PDM_2010_12_a53/

[1] Tyukin I. Yu., Terekhov V. A., Adaptatsiya v nelineinykh dinamicheskikh sistemakh, LKI, SPb., 2008, 384 pp.

[2] Kolesnikova C. I., Lakhodynov V. S., Tsoi Yu. R., “Issledovanie kachestva raspoznavaniya sostoyanii stokhasticheskoi sistemy”, Informatsionnye tekhnologii, 2010, no. 6, 21–31

[3] Volchenko E. V., “Modifitsirovannyi metod potentsialnykh funktsii”, Bionika intellekta, 2006, no. 1, 86–92

[4] Zagoruiko N. G., Borisova I. A., Dyubanov V. V., Kutnenko O. A., “Methods of Recognition Based on the Function of Rival Similarity”, Pattern Recognition and Image Analysis, 2008, no. 1, 1–16

[5] Tyrsin A. N., “Identifikatsiya nestatsionarnykh ekonomicheskikh protsessov na osnove diskretno-sovpadayuschikh modelei avtoregressii”, Izv. Uralskogo gosudarstvennogo ekonomicheskogo universiteta, 2004, no. 9, 44–51