Generation of the alternating group by semiregular involutions
Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 14-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article deals with the congugacy class of semiregular involutions, the only class having exponent 4 in the alternating group.
@article{PDM_2010_12_a5,
     author = {M. E. Tuzhilin},
     title = {Generation of the alternating group by semiregular involutions},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {14--15},
     publisher = {mathdoc},
     number = {12},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2010_12_a5/}
}
TY  - JOUR
AU  - M. E. Tuzhilin
TI  - Generation of the alternating group by semiregular involutions
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2010
SP  - 14
EP  - 15
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2010_12_a5/
LA  - ru
ID  - PDM_2010_12_a5
ER  - 
%0 Journal Article
%A M. E. Tuzhilin
%T Generation of the alternating group by semiregular involutions
%J Prikladnaâ diskretnaâ matematika
%D 2010
%P 14-15
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2010_12_a5/
%G ru
%F PDM_2010_12_a5
M. E. Tuzhilin. Generation of the alternating group by semiregular involutions. Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 14-15. http://geodesic.mathdoc.fr/item/PDM_2010_12_a5/

[1] Brenner J. L., “Covering theorems for FINANSIGS VIII – Almost all conjugacy classes in $A_n$ have exponent $\leq4$”, J. Austral. Math. Soc., 25 (1978), 210–214 | DOI | MR | Zbl

[2] Z. Arad, M. Herzog (eds.), Products of conjugacy classes in groups, Lecture Notes in Math., 1112, Springer-Verlag, Berlin, 1985, 198–221 | MR

[3] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, v. II, Gelios ARV, M., 2003

[4] Tuzhilin M. E., “O porozhdenii znakoperemennoi gruppy poluregulyarnymi involyutsiyami”, Obozrenie prikladnoi i promyshlennoi matematiki, 11:4 (2004), 938–939