Generation of the alternating group by semiregular involutions
Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 14-15
This article deals with the congugacy class of semiregular involutions, the only class having exponent 4 in the alternating group.
@article{PDM_2010_12_a5,
author = {M. E. Tuzhilin},
title = {Generation of the alternating group by semiregular involutions},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {14--15},
year = {2010},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2010_12_a5/}
}
M. E. Tuzhilin. Generation of the alternating group by semiregular involutions. Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 14-15. http://geodesic.mathdoc.fr/item/PDM_2010_12_a5/
[1] Brenner J. L., “Covering theorems for FINANSIGS VIII – Almost all conjugacy classes in $A_n$ have exponent $\leq4$”, J. Austral. Math. Soc., 25 (1978), 210–214 | DOI | MR | Zbl
[2] Z. Arad, M. Herzog (eds.), Products of conjugacy classes in groups, Lecture Notes in Math., 1112, Springer-Verlag, Berlin, 1985, 198–221 | MR
[3] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, v. II, Gelios ARV, M., 2003
[4] Tuzhilin M. E., “O porozhdenii znakoperemennoi gruppy poluregulyarnymi involyutsiyami”, Obozrenie prikladnoi i promyshlennoi matematiki, 11:4 (2004), 938–939