On weak key-scheduling algorithms relatively the related-key attack
Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 27-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper key-scheduling algorithms having the defined recurrent property are considered. For this class of algorithms we describe related-key attacks. The complexity of the attack is equal to the exhaustive search of one round key. It requires a little number of plaintexts.
@article{PDM_2010_12_a11,
     author = {M. A. Pudovkina},
     title = {On weak key-scheduling algorithms relatively the related-key attack},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {27--29},
     publisher = {mathdoc},
     number = {12},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2010_12_a11/}
}
TY  - JOUR
AU  - M. A. Pudovkina
TI  - On weak key-scheduling algorithms relatively the related-key attack
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2010
SP  - 27
EP  - 29
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2010_12_a11/
LA  - ru
ID  - PDM_2010_12_a11
ER  - 
%0 Journal Article
%A M. A. Pudovkina
%T On weak key-scheduling algorithms relatively the related-key attack
%J Prikladnaâ diskretnaâ matematika
%D 2010
%P 27-29
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2010_12_a11/
%G ru
%F PDM_2010_12_a11
M. A. Pudovkina. On weak key-scheduling algorithms relatively the related-key attack. Prikladnaâ diskretnaâ matematika, no. 12 (2010), pp. 27-29. http://geodesic.mathdoc.fr/item/PDM_2010_12_a11/

[1] Ciet M., Piret G., Quisquater J.-J., A survey of key schedule cryptanalysis, Universite catholique de Louvain, Crypto Group, 2002 http://www.dice.ucl.ac.be/crypto/techreports.html

[2] Kelsey J., Schneier B., Wagner D., “Key-Schedule Cryptanalysis of IDEA, G-DES, GOST, SAFER, and Triple-DES”, LNCS, 1109, 1996, 237–251 | MR

[3] Kelsey J., Schneier B., Wagner D., “Related-Key Cryptanalysis of 3-WAY, Biham-DES, CAST, DES-X, NewDES, RC2, and TEA”, LNCS, 1334, 1997, 233–246 | Zbl

[4] Biryukov A., Khovratovich D., Nikolic I., “Distinguisher and Related-Key Attack on the Full AES-256”, LNCS, 5677, 2009, 231–249 | MR | Zbl

[5] Biham E., Dunkelman O., Keller N., “Related-key boomerang and rectangle attacks”, LNCS, 3494, 2005, 507–525 | MR | Zbl

[6] Biham E., “New Type of Cryptanalytic Attacks Using Related Key”, LNCS, 765, 1994, 229–246

[7] Knudsen L. R., “Cryptanalysis of LOKI91”, LNCS, 718, 1993, 196–208 | Zbl

[8] Ciet M., Piret G., Quisquater J.-J., Related-Key and Slide Attacks: Analysis, Connections, and Improvements http://www.dice.ucl.ac.be/crypto

[9] Shnaier B., Prikladnaya kriptografiya. Protokoly, algoritmy, iskhodnye teksty na yazyke Si, Triumf, M., 2002

[10] Blunden M., Escott A., “Related Key Attacks on Reduced Round KASUMI”, LNCS, 2355, 2001, 277–285

[11] Courtois N., Bard G., Algebraic and Slide Attacks on KeeLoq, Cryptology ePrint Archive. Report 2007/062, 2007

[12] Biryukov A., Wagner D., “Slide Attacks”, LNCS, 1636, 1999, 245–259 | Zbl

[13] Seki H., Kaneko T., “Differential cryptanalysis of reduced rounds of gost”, Selected Areas in Cryptography, 2012, Springer, 2000, 315–323 | MR

[14] Biham E., Dunkelman O., Keller N., “Improved slide attacks”, LNCS, 4593, 2007, 153–166 | Zbl

[15] Kara O., “Reflection Cryptanalysis of Some Ciphers”, LNCS, 5365, 2008, 294–307 | MR | Zbl

[16] Ko Y., Hong S., Lee W., et al., “Related key differential attacks on 27 rounds of xtea and full-round gost”, LNCS, 3017, 2004, 299–316 | Zbl

[17] Fleischmann E., Gorski M., Huhne J.-H., Lucks S., “Key Recovery Attack on full GOST Block Cipher with Zero Time and Memory”, WEWoRC, 2009