Argument of knowledge protocol for a~Goppa codeword and for an error of a~bounded weigth
Prikladnaâ diskretnaâ matematika, no. 4 (2009), pp. 64-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new argument of knowledge protocol with honest verifier is proposed for the Goppa polynomial, codeword and the error of a bounded weight. The soundness of the protocol is based on the hardness assumption for the discrete logarithm problem.
Keywords: interactive argument system, zero knowledge, commitment scheme
Mots-clés : Goppa code.
@article{PDM_2009_4_a5,
     author = {V. E. Fedyukovych},
     title = {Argument of knowledge protocol for {a~Goppa} codeword and for an error of a~bounded weigth},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {64--71},
     publisher = {mathdoc},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2009_4_a5/}
}
TY  - JOUR
AU  - V. E. Fedyukovych
TI  - Argument of knowledge protocol for a~Goppa codeword and for an error of a~bounded weigth
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2009
SP  - 64
EP  - 71
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2009_4_a5/
LA  - ru
ID  - PDM_2009_4_a5
ER  - 
%0 Journal Article
%A V. E. Fedyukovych
%T Argument of knowledge protocol for a~Goppa codeword and for an error of a~bounded weigth
%J Prikladnaâ diskretnaâ matematika
%D 2009
%P 64-71
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2009_4_a5/
%G ru
%F PDM_2009_4_a5
V. E. Fedyukovych. Argument of knowledge protocol for a~Goppa codeword and for an error of a~bounded weigth. Prikladnaâ diskretnaâ matematika, no. 4 (2009), pp. 64-71. http://geodesic.mathdoc.fr/item/PDM_2009_4_a5/

[1] Fedyukovich V. E., “Protokol argumenta znaniya slova koda Goppy i oshibki ogranichennogo vesa”, Prikladnaya diskretnaya matematika, Prilozhenie No 1 (2009), 30–32

[2] Goldreich O., Micali S., Wigderson A., “Proofs that yield nothing but their validity for all languages in NP have zero-knowledge proof systems”, J. ACM, 38:3 (1991), 691–729 | DOI | MR | Zbl

[3] Brassard G., Chaum D., Crépeau C., “Minimum disclosure proofs of knowledge”, J. Comput. Syst. Sci., 37:2 (1988), 156–189 | DOI | MR | Zbl

[4] Bellare M., Goldreich O., “On defining proofs of knowledge”, CRYPTO, 1992, 390–420 | MR

[5] G. Brassard, C. Crépeau, S. Laplante, C. Léger, “Computationally convincing proofs of knowledge”, STACS, 1991, 251–262 | MR | Zbl

[6] Bellare M., Micali S., Ostrovsky R., “The (true) complexity of statistical zero knowledge”, STOC, 1990, 494–502

[7] Cramer R., Damgård I., Schoenmakers B., “Proofs of partial knowledge and simplified design of witness hiding protocols”, CRYPTO, 1994, 174–187 | MR | Zbl

[8] Fiat A., Shamir A., “How to prove yourself: Practical solutions to identification and signature problems”, CRYPTO, 1986, 186–194 | MR

[9] Varnovskii N. P., “Tipy nulevogo razglasheniya”, XI Mezhdunar. shkola-seminar “Sintez i slozhnost upravlyayuschikh sistem”, Nizhnii Novgorod, 2000

[10] Pedersen T. P., “Non-interactive and information-theoretic secure verifiable secret sharing”, CRYPTO, 1991, 129–140 | MR

[11] Schnorr C. P., “Efficient identification and signatures for smart cards”, CRYPTO, 1989, 239–252 | MR

[12] Chaum D., Evertse J. H., van de Graaf J., “An improved protocol for demonstrating possession of discrete logarithms and some generalizations”, EUROCRYPT, 1987, 127–141

[13] Goppa V. D., “Novyi klass lineinykh korrektiruyuschikh kodov”, Problemy peredachi informatsii, 6:3 (1970), 24–30 | MR | Zbl

[14] Goppa V. D., “Ratsionalnoe predstavlenie kodov i $(L,g)$-kody”, Problemy peredachi informatsii, 7:3 (1971), 41–49 | MR | Zbl

[15] Fedyukovich V. E., “Izmenchivye klyuchi podpisi”, Informatsionnye tekhnologii i sistemy (ITiS' 09), Sbornik trudov konferentsii [Elektronnyi resurs], IPPI RAN, M., 2009, 396–400; , (3.12.2009) http://www.iitp.ru/ru/conferences/539.htm

[16] Fedyukovich V. E., Protokol argumenta dlya tsikla Gamiltona, Preprint, IACR, 2008; , (23.08.2008) http://eprint.iacr.org/2008/363

[17] Fedyukovych V., “Protocols for graph isomorphism and hamiltonicity”, 9th Central European Conference on Cryptography – Trebic' 09 (June 23–26, 2009), The proceedings will be published as a special issue of Tatra Mountains Mathematical Publications

[18] Fedyukovich V. E., Sharapov V. G., “Protokol demonstratsii $K$-kratnogo vkhozhdeniya stroki”, Informatsionnye tekhnologii i sistemy (ITiS' 08), Sbornik trudov konferentsii [Elektronnyi resurs], IPPI RAN, M., 2008, 459–466; , (9.09.2008) http://www.iitp.ru/upload/content/340/itas08_proceedings.pdf