Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2009_4_a2, author = {A. A. Semenov}, title = {About {Tseitin} transformation in logical equations}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {28--50}, publisher = {mathdoc}, number = {4}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2009_4_a2/} }
A. A. Semenov. About Tseitin transformation in logical equations. Prikladnaâ diskretnaâ matematika, no. 4 (2009), pp. 28-50. http://geodesic.mathdoc.fr/item/PDM_2009_4_a2/
[1] Tseitin G. S., “O slozhnosti vyvoda v ischislenii vyskazyvanii”, Zapiski nauchnykh seminarov LOMI AN SSSR, 8, 1968, 234–259 | MR | Zbl
[2] Dantsin E. Ya., “Algoritmika zadachi vypolnimosti”, Voprosy kibernetiki. Problemy sokrascheniya perebora, AN SSSR, M., 1987, 7–29 | MR
[3] Waisberg M., “Untersuchungen uber den Aussagen kalkul von Heyting”, Wiadom. Matemat., 46 (1938), 45–101
[4] Tseitin G., “On the complexity of derivation in propositional calculus”, Automat. Reasoning, 2 (1983), 466–483
[5] Plaisted D., Greenbaum S., “A Structure-preserving Clause Form Translation”, J. Symb. Comput., 2 (1986), 293–304 | DOI | MR | Zbl
[6] Groote J. F., Zantema H., “Resolution and binary decision diagrams cannot simulate each other polynomially”, J. Discr. Appl. Math., 130:2 (2003), 157–171 | DOI | MR | Zbl
[7] Een N., Sorensson N., “Translating Pseudo-Boolean Constraints into SAT”, J. Satisf. Boolean Mod. Comp., 2 (2006), 1–25
[8] Semenov A. A., Zaikin O. S., Bespalov D. V., Ushakov A. A., “SAT-podkhod v kriptoanalize nekotorykh sistem potochnogo shifrovaniya”, Vychislitelnye tekhnologii, 13:6 (2008), 134–150
[9] Semenov A. A., “O preobrazovaniyakh Tseitina v logicheskikh uravneniyakh”, Prikladnaya diskretnaya matematika, Prilozhenie No 1 (2009), 12–13
[10] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Nauka, M., 1986, 384 pp. | MR
[11] Cook S. A., “The complexity of theorem-proving procedures”, Proc. 3rd Ann. ACM Symp. on Theory of Computing, ACM, 1971, 151–159; Kuk S. A., “Slozhnost protsedur vyvoda teorem”, Kiberneticheskii sbornik. Novaya seriya, 12, 1975, 5–15
[12] Geri M., Dzhonson D., Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982 | MR
[13] Razborov A. A., “Proof Complexity of Pigeonhole Principles”, LNCS, 2295, 2002, 100–116 | MR | Zbl
[14] Cook S. A., Reckhow R., “The relative efficiency of propositional proof systems”, J. Symb. Logic, 44 (1979), 239–251 | DOI | MR
[15] Robinson J. A., “A machine-oriented logic based on the resolution principle”, J. ACM, 12:1 (1965), 23–41 ; Robinson Dzh. A., “Mashinno-orientirovannaya logika, osnovannaya na printsipe rezolyutsii”, Kiberneticheskii sbornik. Novaya seriya, 7, 1970, 194–218 | DOI | MR | Zbl | Zbl
[16] Chen Ch., Li R., Matematicheskaya logika i avtomaticheskoe dokazatelstvo teorem, Nauka, M., 1983, 360 pp. | MR | Zbl
[17] Haken A., “The intractability of resolution”, Theor. Comp. Sci., 39 (1985), 297–308 ; Khaken A., “Trudnoreshaemost rezolyutsii”, Kiberneticheskii sbornik. Novaya seriya, 28, 1991, 179–194 | DOI | MR | Zbl | Zbl
[18] Buss S. R., Turan G., “Resolution proofs of generalized pigeonhole principles”, Theoret. Comp. Sci., 62 (1988), 311–317 ; Bass S. R., Turan D., “Dokazatelstvo obobschennogo printsipa Dirikhle metodom rezolyutsii”, Kiberneticheskii sbornik. Novaya seriya, 28, 1991, 195–203 | DOI | MR | Zbl | Zbl
[19] Lee C. Y., “Representation of Switching Circuits by Binary-Decision Programs”, Bell Syst. Techn. J., 38 (1959), 985–999 | MR
[20] Bryant R. E., “Graph-Based Algorithms for Boolean Function Manipulation”, IEEE Trans. Comp., 35:8 (1986), 677–691 | DOI | Zbl
[21] Meinel Ch., Theobald T., Algorithms and Data Structures in VLSI-Design: OBDD-Foundations and Applications, Springer Verlag, Berlin–Heidelberg–New York, 1998
[22] Semenov A. A., Ignatev A. S., “Logicheskie uravneniya i dvoichnye diagrammy reshenii”, Prikladnye algoritmy v diskretnom analize, Diskretnyi analiz i informatika, 2, Izd-vo Irk. un-ta, Irkutsk, 2008, 99–126
[23] Marqeus-Silva J. P., Sakallah K A., “GRASP: A search algorithm for propositional satisfiability”, IEEE Trans. Comp., 48:5 (1999), 506–521 | DOI | MR
[24] Ben-Sasson E., Wigderson A., “Short proofs are narrow – resolution made simple”, Proc. of 31st Ann. ACM Symposium on Theory of Computing, 1999, 517–526 | MR
[25] Semenov A. A., “Konservativnye preobrazovaniya sistem logicheskikh uravnenii”, Vestnik Tomskogo gosuniversiteta. Prilozhenie, 2007, no. 23, 52–59
[26] Tei A., Gribomon P., Lui Zh. i dr., Logicheskii podkhod k iskusstvennomu intellektu, Mir, M., 1991, 429 pp.
[27] Gorshkov S. P., “Primenenie teorii NP-polnykh zadach dlya otsenki slozhnosti resheniya sistem bulevykh uravnenii”, Obozrenie prikladnoi i promyshlennoi matematiki, 2:3 (1995), 325–398 | MR
[28] Agibalov G. P., Diskretnye avtomaty na polureshetkakh, Izd-vo Tom. un-ta, Tomsk, 1993 | Zbl
[29] Cheremisinova L. D., Novikov D. Ya., “Proverka skhemnoi realizatsii chastichnykh bulevykh funktsii”, Vestnik Tomskogo gosuniversiteta. Upravlenie, vychislitelnaya tekhnika, informatika, 2008, no. 4(5), 102–111
[30] Semenov A. A., “Translyatsiya algoritmov vychisleniya diskretnykh funktsii v vyrazheniya propozitsionalnoi logiki”, Prikladnye algoritmy v diskretnom analize, Diskretnyi analiz i informatika, 2, Izd-vo Irk. un-ta, Irkutsk, 2008, 70–98
[31] Katlend N., Vychislimost. Vvedenie v teoriyu rekursivnykh funktsii, Mir, M., 1983 | MR
[33] Zaikin O. S., Semenov A. A., “Tekhnologiya krupnoblochnogo parallelizma v SAT-zadachakh”, Problemy upravleniya, 2008, no. 1, 43–50
[34] Semenov A. A., Zaikin O. S., “Nepolnye algoritmy v krupnoblochnom parallelizme kombinatornykh zadach”, Vychislitelnye metody i programmirovanie, 9 (2008), 108–118
[35] Semenov A. A., Zaikin O. S., Bespalov D. V. i dr., “Reshenie zadach obrascheniya diskretnykh funktsii na mnogoprotsessornykh vychislitelnykh sistemakh”, Trudy Chetvertoi Mezhdunar. konf., PACO'2008 (Moskva, 26–29 oktyabrya 2008), M., 2008, 152–176
[36] Valiant L. G., “The complexity of computing the permanent”, Theor. Comp. Sci., 8 (1979), 189–202 | DOI | MR
[37] Stockmeyer L., “Classifying of computational complexity of problems”, J. Symb. Logic, 52:1 (1987), 1–43 ; Stokmeier L., “Klassifikatsiya vychislitelnoi slozhnosti problem”, Kiberneticheskii sbornik. Novaya seriya, 26, 1989, 20–83 | DOI | MR | Zbl
[38] Valiant L. G., “The complexity of enumeration and reliability problems”, SIAM J. Comp., 8 (1979), 410–421 | DOI | MR | Zbl
[39] Gorshkov S. P., “O slozhnosti zadachi nakhozhdeniya chisla reshenii sistem bulevykh uravnenii”, Diskretnaya matematika, 8:1 (1996), 72–85 | MR | Zbl