About invariants for some classes of quasimonotonic functions on a~semilattice
Prikladnaâ diskretnaâ matematika, no. 4 (2009), pp. 21-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

Invariant predicates for some classes of quasimonotonic and monotonic functions on a finite semilattice are studied. Generating sets in the systems of such predicates are defined. For the purpose of generating, the operations of predicate conjunction and variable relabeling are used.
Keywords: semilattice, monotonic function, quasimonotonic function, invariant predicates, generating sets.
@article{PDM_2009_4_a1,
     author = {N. G. Parvatov},
     title = {About invariants for some classes of quasimonotonic functions on a~semilattice},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {21--27},
     publisher = {mathdoc},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2009_4_a1/}
}
TY  - JOUR
AU  - N. G. Parvatov
TI  - About invariants for some classes of quasimonotonic functions on a~semilattice
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2009
SP  - 21
EP  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2009_4_a1/
LA  - ru
ID  - PDM_2009_4_a1
ER  - 
%0 Journal Article
%A N. G. Parvatov
%T About invariants for some classes of quasimonotonic functions on a~semilattice
%J Prikladnaâ diskretnaâ matematika
%D 2009
%P 21-27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2009_4_a1/
%G ru
%F PDM_2009_4_a1
N. G. Parvatov. About invariants for some classes of quasimonotonic functions on a~semilattice. Prikladnaâ diskretnaâ matematika, no. 4 (2009), pp. 21-27. http://geodesic.mathdoc.fr/item/PDM_2009_4_a1/

[1] Agibalov G. P., Oranov A. M., Lektsii po teorii konechnykh avtomatov, Izd-vo Tom. un-ta, Tomsk, 1983, 185 pp.

[2] Agibalov G. P., Diskretnye avtomaty na polureshëtkakh, Izd-vo Tom. un-ta, Tomsk, 1993, 227 pp. | Zbl

[3] Sholomov L. A., “Elementy teorii nedoopredelënnoi informatsii”, Prikladnaya diskretnaya matematika, Prilozhenie No 2 (2009), 18–42

[4] Parvatov N. G., “Funktsionalnaya polnota v zamknutykh klassakh kvazimonotonnykh i monotonnykh trekhznachnykh funktsii na polureshetke”, Diskretn. analiz i issled. oper. Ser. 1, 10:1 (2003), 61–78 | MR | Zbl

[5] Parvatov N. G., “Teorema o funktsionalnoi polnote v klasse kvazimonotonnykh funktsii na konechnoi polureshetke”, Diskret. analiz i issled. oper. Ser. 1, 13:3 (2006), 62–82 | MR

[6] Marchenkov S. S., “K suschestvovaniyu konechnykh bazisov v zamknutykh klassakh bulevykh funktsii”, Algebra i logika, 23:1 (1984), 88–99 | MR | Zbl

[7] Bodnarchuk V. G., Kaluzhnin L. A., Kotov V. N., Romov B. A., “Teoriya Galua dlya algebr Posta”, Kibernetika, 1969, no. 3, 1–10 ; no. 5, 1–9 | Zbl

[8] Baker K. A., Pixly A. F., “Polynomial interpolation and chinese remainder theorem for algebraic systems”, Math. Zeiteschr., 143:2 (1975), 165–174 | DOI | MR | Zbl

[9] Parvatov N. G., “Zamechaniya o konechnoi porozhdaemosti zamknutykh klassov”, Diskret. analiz i issled. operatsii. Ser. 1, 11:3 (2004), 32–47 | MR | Zbl

[10] Parvatov N. G., “Nekotorye konstruktsii konechno-porozhdaemykh klonov”, Vestnik Tomskogo gosuniversiteta. Prilozhenie, 2004, no. 9, 26–28