Properties of bent functions with minimal distance
Prikladnaâ diskretnaâ matematika, no. 4 (2009), pp. 5-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

The minimal Hamming distance $2^{n/2}$ between distinct bent functions of $n$ variables is obtained. We prove that two bent functions are at the minimal distance if and only if the set of vectors for which they differ is a linear manifold and both functions are affine ones on it. We give an algorithm for constructing all the bent functions being at the minimal distance from the given bent function. Some experimental data are presented for bent functions of the small number of variables.
Keywords: bent function, CDMA, OFDM.
@article{PDM_2009_4_a0,
     author = {N. A. Kolomeec and A. V. Pavlov},
     title = {Properties of bent functions with minimal distance},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {5--20},
     publisher = {mathdoc},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2009_4_a0/}
}
TY  - JOUR
AU  - N. A. Kolomeec
AU  - A. V. Pavlov
TI  - Properties of bent functions with minimal distance
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2009
SP  - 5
EP  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2009_4_a0/
LA  - ru
ID  - PDM_2009_4_a0
ER  - 
%0 Journal Article
%A N. A. Kolomeec
%A A. V. Pavlov
%T Properties of bent functions with minimal distance
%J Prikladnaâ diskretnaâ matematika
%D 2009
%P 5-20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2009_4_a0/
%G ru
%F PDM_2009_4_a0
N. A. Kolomeec; A. V. Pavlov. Properties of bent functions with minimal distance. Prikladnaâ diskretnaâ matematika, no. 4 (2009), pp. 5-20. http://geodesic.mathdoc.fr/item/PDM_2009_4_a0/

[1] Tokareva N. N., “Bent-funktsii: rezultaty i prilozheniya. Obzor rabot”, Prikladnaya diskretnaya matematika, 2009, no. 1, 15–37

[2] Paterson K. G., “Sequences For OFDM and Multi-code CDMA: two problems in algebraic Coding Theory”, Sequences and their applications, Seta 2001, Second Int. Conference, Proc. (Bergen, Norway, May 13–17, 2001), Springer, Berlin, 2002, 46–71 | MR | Zbl

[3] Logachev O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, M., 2004, 470 pp. | MR

[4] Carlet C., “Boolean Functions for Cryptography and Error Correcting Codes”, Chapter of the monograph, Boolean Methods and Models, eds. P. Hammer, Y. Crama, Cambridge Univ. Press (to appear)

[5] McFarland R. L., “A family of difference sets in non-cyclic groups”, J. Combin. Theory Ser. A, 15:1 (1973), 1–10 | DOI | MR | Zbl

[6] Yaschenko V. V., “O kriterii rasprostraneniya dlya bulevykh funktsii i o bent-funktsiyakh”, Probl. peredachi informatsii, 33:1 (1997), 75–86 | MR | Zbl

[7] Dillon J. F., Elementary Hadamard Difference Sets, Ph. D. Thesis, Univ. of Maryland, 1974 | MR

[8] Dillon J. F., “A survey of bent functions”, The NSA Technical J., Special Issue (1972), 191–215

[9] Rothaus O., “On bent functions”, J. Combin. Theory Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[10] Braeken A., Cryptographic properties of Boolean functions and S-boxes, Ph. D. Thesis, Katholieke Univ. Leuven, 2006