Properties of bent functions with minimal distance
Prikladnaâ diskretnaâ matematika, no. 4 (2009), pp. 5-20

Voir la notice de l'article provenant de la source Math-Net.Ru

The minimal Hamming distance $2^{n/2}$ between distinct bent functions of $n$ variables is obtained. We prove that two bent functions are at the minimal distance if and only if the set of vectors for which they differ is a linear manifold and both functions are affine ones on it. We give an algorithm for constructing all the bent functions being at the minimal distance from the given bent function. Some experimental data are presented for bent functions of the small number of variables.
Keywords: bent function, CDMA, OFDM.
@article{PDM_2009_4_a0,
     author = {N. A. Kolomeec and A. V. Pavlov},
     title = {Properties of bent functions with minimal distance},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {5--20},
     publisher = {mathdoc},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2009_4_a0/}
}
TY  - JOUR
AU  - N. A. Kolomeec
AU  - A. V. Pavlov
TI  - Properties of bent functions with minimal distance
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2009
SP  - 5
EP  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2009_4_a0/
LA  - ru
ID  - PDM_2009_4_a0
ER  - 
%0 Journal Article
%A N. A. Kolomeec
%A A. V. Pavlov
%T Properties of bent functions with minimal distance
%J Prikladnaâ diskretnaâ matematika
%D 2009
%P 5-20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2009_4_a0/
%G ru
%F PDM_2009_4_a0
N. A. Kolomeec; A. V. Pavlov. Properties of bent functions with minimal distance. Prikladnaâ diskretnaâ matematika, no. 4 (2009), pp. 5-20. http://geodesic.mathdoc.fr/item/PDM_2009_4_a0/